Spectral Mesh Processing
H. Zhang
Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, [email protected]
Search for more papers by this authorO. Van Kaick
Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, [email protected]
Search for more papers by this authorR. Dyer
Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, [email protected]
Search for more papers by this authorH. Zhang
Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, [email protected]
Search for more papers by this authorO. Van Kaick
Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, [email protected]
Search for more papers by this authorR. Dyer
Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, [email protected]
Search for more papers by this authorAbstract
Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a combinatorial Laplacian aids our understanding of the low-pass filtering approach to mesh smoothing. Over the past 15 years, the list of applications in the area of geometry processing which utilize the eigenstructures of a variety of mesh operators in different manners have been growing steadily. Many works presented so far draw parallels from developments in fields such as graph theory, computer vision, machine learning, graph drawing, numerical linear algebra, and high-performance computing. This paper aims to provide a comprehensive survey on the spectral approach, focusing on its power and versatility in solving geometry processing problems and attempting to bridge the gap between relevant research in computer graphics and other fields. Necessary theoretical background is provided. Existing works covered are classified according to different criteria: the operators or eigenstructures employed, application domains, or the dimensionality of the spectral embeddings used. Despite much empirical success, there still remain many open questions pertaining to the spectral approach. These are discussed as we conclude the survey and provide our perspective on possible future research.
References
- [AKY99] Alpert C. J., Kahng A. B., Yao S. Z.: Spectral partitioning with multiple eigenvectors. Discrete Applied Mathematics, 90 (1999), 3–26.
- [BCG05] Ben-Chen M., Gotsman C.: On the optimality of spectral compression of mesh data. ACM Trans. on Graphics, 24, 1 (2005), 60–80.
- [BDLR*04] Bengio Y., Delalleau O., Le Roux N., Paiement J.-F., Vincent P., Ouimet M.: Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16, 10 (2004), 2197–2219.
- [BH03] Brand M., Huang K.: A unifying theorem for spectral embedding and clustering. In Proc. of Int. Conf. on AI and Stat. ( Key West , Florida , 2003).
- [Bha97]
Bhatia R.: Matrix Analysis. Springer-Verlag,
New York
,
NY
,
USA
, 1997.
10.1007/978-1-4612-0653-8 Google Scholar
- [BHL*04] Biyikoğlu T., Hordijk W., Leydold J., Pisanski T., Stadler P. F.: Graph Laplacians, nodal domains, and hyperplane arrangements. Linear Algebra and Its Applications, 390 (2004), 155–174.
- [BN03] Belkin M., Niyogi P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Computation, 15, 6 (2003), 1373–1396.
- [BN05] Belkin M., Niyogi P.: Towards a theoretical foundation for Laplacian-based manifold methods. In Proc. of Conference on Learning Theory, Lecture Notes on Comput. Sci. (2005), vol. 3559, pp. 486–500.
- [Bol98]
Bollobás B.: Modern Graph Theory. Springer,
New York
,
NY
,
USA
, 1998.
10.1007/978-1-4612-0619-4 Google Scholar
- [BPS93] Barnard S. T., Pothen A., Simon H. D.: A spectral algorithm for envelope reduction of sparse matrices. In Proc. of ACM Conference on Supercomputing (1993), pp. 493–502.
- [CC94] Cox T. F., Cox M. A. A.: Multidimensional Scaling. Chapman & Hall, Boca Raton , FL , USA , 1994.
- [Cha84] Chavel I.: Eigenvalues in Riemannian Geometry. Academic Press, Orlando , FL , USA , 1984.
- [Chu97] Chung F. R. K.: Spectral Graph Theory. AMS, Providence , RI , USA , 1997.
- [CK04] Caelli T., Kosinov S.: An eigenspace projection clustering method for inexact graph matching. IEEE Trans. Pat. Ana. & Mach. Int., 26, 4 (2004), 515–519.
- [CTSO03] Chen D.-Y., Tian X.-P., Shen Y.-T., Ouhyoung M.: On visual similarity based 3D model retrieval. Computer Graphics Forum, 22, 3 (2003), 223–232.
- [DBG*06] Dong S., Bremer P.-T., Garland M., Pascucci V., Hart J. C.: Spectral surface quadrangulation. In SIGGRAPH (2006), pp. 1057–1066.
- [dGGV08] De Goes F., Goldenstein S., Velho L.: A hierarchical segmentation of articulated bodies. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1349–1356.
- [DGLS01] Davies E. B., Gladwell G. M. L., Leydold J., Stadler P. F.: Discrete nodal domain theorems. Lin. Alg. Appl., 336 (2001), 51–60.
- [DHLM05] Desbrun M., Hirani A., Leok M., Marsden J.: Discrete exterior calculus. (preprint, arXiv:math.DG/0508341), 2005.
- [DKT06]
Desbrun M.,
Kanso E.,
Tong Y.: Discrete differential forms for computational modeling. In
SIGGRAPH Courses Notes (2006), pp. 39–54.
10.1145/1185657.1185665 Google Scholar
- [DMSB99] Desbrun M., Meyer M., Schröder P., Barr A. H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In SIGGRAPH (1999), pp. 317–324.
- [DPS02] Díaz J., Petit J., Serna M.: A survey of graph layout problems. ACM Computing Survey, 34, 3 (2002), 313–356.
- [dST04] De Silva V., Tenenbaum B.: Sparse Multidimensional Scaling using Landmark Points. Tech. rep., Stanford University , June 2004.
- [dV90] De Verdière Y. C.: Sur un nouvel invariant des graphes et un critére de planarité. Journal of Combinatorial Theory, Series B, 50 (1990), 11–21.
- [DZM07] Dyer R., Zhang H., Möller T.: An Investigation of the Spectral Robustness of Mesh Laplacians. Tech. rep., Simon Fraser University , June 2007.
- [EK03] Elad A., Kimmel R.: On bending invariant signatures for surfaces. IEEE Trans. Pat. Ana. & Mach. Int., 25, 10 (2003), 1285–1295.
- [EY36] Eckart C., Young G.: The approximation of one matrix by another of lower rank. Psychometrika, 1 (1936), 211–218.
- [Far48] Fary I.: On straight line representations of planar graphs. Acta Sci. Math., 11 (1948), 229–233.
- [FBCM04] Fowlkes C., Belongie S., Chung F., Malik J.: Spectral grouping using the Nyström method. IEEE Trans. Pat. Ana. & Mach. Int., 26, 2 (2004), 214–225.
- [Fie73] Fiedler M.: Algebraic connectivity of graphs. Czech. Math. J., 23 (1973), 298–305.
- [Flo03] Floater M. S.: Mean value coordinates. Comput. Aided Geom. Des., 20, 1 (2003), 19–27.
- [Fuj95] Fujiwara K.: Eigenvalues of Laplacians on a closed Riemannian manifold and its nets. Proceedings of the AMS, 123, 8 (1995), 2585–2594.
- [GGS03] Gotsman C., Gu X., Sheffer A.: Fundamentals of spherical parameterization for 3d meshes. ACM Trans. on Graphics, 22, 3 (2003), 358–363.
- [Gli05] Glickenstein D.: Geometric triangulations and discrete Laplacians on manifolds, 2005. arxiv:math.MG/0508188.
- [GM00] Guattery S., Miller G. L.: Graph embeddings and Laplacian eigenvalues. SIAM J. Matrix Anal. Appl., 21, 3 (2000), 703–723.
- [Got03] Gotsman C.: On graph partitioning, spectral analysis, and digital mesh processing. In Proc. IEEE Int. Conf. on Shape Modeling and Applications (2003), pp. 165–171.
- [Hal70] Hall K. M.: An r-dimensional quadratic placement algorithm. Manage. Sci., 17, 8 (1970), 219–229.
- [Hir03] Hirani A. N.: Discrete Exterior Calculus. PhD thesis, Caltech , 2003.
- [HLMS04] Ham J., Lee D. D., Mika S., Schölkopf B.: A kernel view of the dimensionality reduction of manifolds. In Proc. of Int. Conf. on Machine learning (2004), pp. 47–54.
- [HPW06] Hildebrandt K., Polthier K., Wardetzky M.: On the Convergence of Metric and Geometric Properties of Polyhedral Surfaces. Geometriae Dedicata, 123, 1 (2006), 89–112.
- [HS97] Hoffman D. D., Singh M.: Salience of visual parts. Cognition, 63 (1997), 29–78.
- [HSKK01] Hilaga M., Shinagawa Y., Kohmura T., Kunii T. L.: Topology matching for fully automatic similarity estimation of 3D shapes. In SIGGRAPH (2001), pp. 203–212.
- [HWAG09] Huang Q., Wicke M., Adams B., Guibas L. J.: Shape decomposition using modal analysis. Computer Graphics Forum (Eurographics), 28, 2 (2009), 407–416.
- [IGG01] Isenburg M., Gumhold S., Gotsman C.: Connectivity shapes. In Proc. of IEEE Visualization (2001).
- [IL05] Isenburg M., Lindstrom P.: Streaming meshes. In Proc. of IEEE Visualization (2005), pp. 231–238.
- [Jai89] Jain A. K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs , NJ , USA , 1989.
- [JNT01] Jakobson D., Nadirashvili N., Toth J.: Geometric properties of eigenfunctions. Russian Mathematical Surveys, 56, 6 (2001), 1085–1105.
- [JZ06] Jain V., Zhang H.: Robust 3D shape correspondence in the spectral domain. In Proc. IEEE Int. Conf. on Shape Modeling and Applications (2006), pp. 118–129.
- [JZ07] Jain V., Zhang H.: A spectral approach to shape-based retrieval of articulated 3D models. Computer Aided Design, 39 (2007), 398–407.
- [JZvK07]
Jain V.,
Zhang H.,
Van Kaick O.: Non-rigid spectral correspondence of triangle meshes.
Int. J. on Shape Modeling, 13, 1 (2007), 101–124.
10.1142/S0218654307000968 Google Scholar
- [KCH02] Koren Y., Carmel L., Harel D.: ACE: A fast multiscale eigenvector computation for drawing huge graphs. In Proc. of IEEE Symposium on Information Visualization (InfoVis) (2002), pp. 137–144.
- [KG00] Karni Z., Gotsman C.: Spectral compression of mesh geometry. In SIGGRAPH (2000), pp. 279–286.
- [KG01] Karni Z., Gotsman C.: 3D mesh compression using fixed spectral bases. In Proc. of Graphics Interface (June 2001), pp. 1–8.
- [KLT05] Katz S., Leifman G., Tal A.: Mesh segmentation using feature point and core extraction. The Visual Computer (Special Issue of Pacific Graphics), 21, 8–10 (2005), 649–658.
- [Kor03] Koren Y.: On spectral graph drawing. In Proc. of the International Computing and Combinatorics Conference (2003), pp. 496–508.
- [KR05] Kim B. M., Rossignac J.: Geofilter: Geometric selection of mesh filter parameters. Computer Graphics Forum (Eurographics), 24, 3 (2005), 295–302.
- [KSO04] Kolluri R., Shewchuk J. R., O'Brien J. F.: Spectral surface reconstruction from noisy point clouds. In Proc. Eurographics Symp. on Geometry Processing (2004), pp. 11–21.
- [KVV00] Kannan R., Vempala S., Vetta A.: On clustering – good, bad, and spectral. In IEEE Symposium on Foundations of Computer Science (2000), pp. 367–377.
- [L06] Lévy B.: Laplace-Beltrami eigenfunctions: Towards an algorithm that understands geometry. In Proc. IEEE Int. Conf. on Shape Modeling and Applications (2006), pp. 13–20.
- [LH05] Leordeanu M., Hebert M.: A spectral technique for correspondence problems using pairwise constraints. In Proc. Int. Conf. on Comp. Vis. (October 2005), vol. 2, pp. 1482–1489.
- [LJZ06] Liu R., Jain V., Zhang H.: Subsampling for efficient spectral mesh processing. In Proc. of Computer Graphics International (2006), pp. 172–184.
- [Lov93] Lovász: Random walks on graphs: a survey. In Combinatorics, Paul Erdös is eighty. Keszthely, (Ed.), vol. 2. Budapest : János Bolyai Math. Soc., 1993, pp. 353–397.
- [LS99] Lovász L., Schrijver A.: On the null space of a Colin de Verdière matrix. Annales de l'institut Fourier, 49, 3 (1999), 1017–1026.
- [LZ04] Liu R., Zhang H.: Segmentation of 3D meshes through spectral clustering. In Prof. of Pacific Graphics (2004), pp. 298–305.
- [LZ07] Liu R., Zhang H.: Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Eurographics), 26 (2007), 385–394.
- [LZSCO09] Liu R., Zhang H., Shamir A., Cohen-Or D.: A part-aware surface metric for shape analysis. Computer Graphics Forum (Eurographics), 28, 2 (2009), 397–406.
- [LZvK06] Liu R., Zhang H., Van Kaick O.: An Investigation into Spectral Sequencing using Graph Distance. Tech. Rep. TR 2006-08, School of Computing Science, SFU , May 2006.
- [MCBH07] Mateus D., Cuzzolin F., Boyer E., Horaud R.: Articulated shape matching by robust alignment of embedded representations. In ICCV '07 Workshop on 3D Representation for Recognition (2007).
- [McG] McGill 3D Shape Benchmark: http://www.cim.mcgill.ca/~shape/benchMark/.
- [MDSB02] Meyer M., Desbrun M., Schröder P., Barr A. H.: Discrete differential-geometry operators for triangulated 2-manifolds. In Proc. of VisMath (2002), pp. 35–57.
- [Mey00]
Meyer C. D.: Matrix Analysis and Applied Linear Algebra. SIAM,
Philadelphia
,
PA
,
USA
, 2000.
10.1137/1.9780898719512 Google Scholar
- [MKR03] M. Kazhdan T. F. , Rusinkiewicz S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. Eurographics Symp. on Geometry Processing (2003), pp. 156–165.
- [Moh97] Mohar B.: Some applications of Laplacian eigenvalues of graphs. In Graph Symmetry: Algebraic Methods and Applications. G. Hahn, G. Sabidussi (Eds.). Kluwer, Dordrecht , The Netherlands (1997), pp. 225–275.
- [MP93] Mohar B., Poljak S.: Eigenvalues in Combinatorial Optimization, vol. 50 of IMA Volumes in Mathematics and Its Applications. Springer-Verlag, New York , NY , USA , 1993, pp. 107–151.
- [MP04] Manor L., Perona P.: Self-tuning spectral clustering. In Advances in Neural Information Processing Systems (NIPS) (2004), vol. 17, pp. 1601–1608.
- [MTAD08] Mullen P., Tong Y., Alliez P., Desbrun M.: Spectral conformal parameterization. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1487–1494.
- [NJW02] Ng A. Y., Jordan M. I., Weiss Y.: On spectral clustering: analysis and an algorithm. In Advances in Neural Information Processing Systems (NIPS) (2002), vol. 14, pp. 849–856.
- [OFCD02] Osada R., Funkhouser T., Chazelle B., Dobkin D.: Shape distributions. ACM Trans. on Graphics, 21, 4 (2002), 807–832.
- [OMT02] Ohbuchi R., Mukaiyama A., Takahashi S.: A frequency-domain approach to watermarking 3D shapes. Computer Graphics Forum, 21, 3 (2002), 373–382.
- [OSG08] Ovsjanikov M., Sun J., Guibas L.: Global intrinsic symmetries of shapes. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1341–1348.
- [OTMM01] Ohbuchi R., Takahashi S., Miyazawa T., Mukaiyama A.: Watermarking 3D polygonal meshes in the mesh spectral domain. In Proc. of Graphics Interface (2001), pp. 9–18.
- [PF98] Perona P., Freeman W.: A factorization approach to grouping. In Proc. Euro. Conf. on Comp. Vis. (1998), pp. 655–670.
- [PG01] Pauly M., Gross M.: Spectral processing of point-sampled geometry. In SIGGRAPH (2001), pp. 379–386.
- [PP93]
Pinkall U.,
Polthier K.: Computing discrete minimal surfaces and their conjugates.
Experimental Mathematics, 2, 1 (1993), 15–36.
10.1080/10586458.1993.10504266 Google Scholar
- [PST00] Pisanski T., Shawe-Taylor J.: Characterizing graph drawing with eigenvectors. Journal of Chemical Information and Computer Sciences, 40, 3 (2000), 567–571.
- [Ros97]
Rosenberg S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.
10.1017/CBO9780511623783 Google Scholar
- [RS00] Roweis S., Saul L.: Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 5500 (2000), 2323–2326.
- [Rus07] Rustamov R. M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proc. Eurographics Symp. on Geometry Processing (2007), pp. 225–233.
- [RWP06] Reuter M., Wolter F.-E., Peinecke N.: Laplacian-Beltrami spectra as ‘shape-DNA’ for shapes and solids. Computer Aided Geometric Design, 38 (2006), 342–366.
- [SB92] Shapiro L. S., Brady J. M.: Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 10, 5 (1992), 283–288.
- [SCOT03] Sorkine O., Cohen-Or D., Toledo S.: High-pass quantization for mesh encoding. In Proc. Eurographics Symp. on Geometry Processing (2003), pp. 42–51.
- [SF73] Strang G., Fix G. J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs , NJ , USA , 1973.
- [SFYD04] Saerens M., Fouss F., Yen L., Dupont P.: The Principal Components Analysis of a Graph, and its Relationship to Spectral Clustering, vol. 3201 of Lecture Notes in Artificial Intelligence. Springer, Berlin/Heidelberg , Germany , 2004, pp. 371–383.
- [SM97] Shi J., Malik J.: Normalized cuts and image segmentation. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (1997), pp. 731–737.
- [SM00] Shi J., Malik J.: Normalized cuts and image segmentation. IEEE Trans. Pat. Ana. & Mach. Int., 22, 8 (2000), 888–905.
- [SMD*05] Shokoufhandeh A., Macrini D., Dickinson S., Siddiqi K., Zucker S.: Indexing hierarchical structures using graph spectra. IEEE Trans. Pat. Ana. & Mach. Int., 27, 7 (2005), 1125–1140.
- [Sor05] Sorkine O.: Laplacian mesh processing. In Eurographics State-of-the-Art Report (2005).
- [SS02] Schölkopf B., Smola A. J.: Learning with Kernels. MIT Press, Cambridge , MA , USA , 2002.
- [SSGD03] Sundar H., Silver D., Gagvani N., Dickinson S.: Skeleton based shape matching and retrieval. In Proc. IEEE Int. Conf. on Shape Modeling and Applications (2003), pp. 130–142.
- [SSM98] Schölkopf B., Smola A. J., Müller K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computations, 10 (1998), 1299–1319.
- [SSrM98] Scholköpf B., Smola E., Robert Müller K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10 (1998), 1299–1319.
- [ST96] Spielman D. A., Teng S.-H.: Spectral partitioning works: Planar graphs and finite element meshes. In IEEE Symposium on Foundation of Computer Science (1996), pp. 96–105.
- [STWCK05] Shawe-Taylor J., Williams C. K. I., Cristianini N., Kandola J.: On the eigenspectrum of the gram matrix and the generalization error of kernel-PCA. IEEE Trans. on Information Theory, 51, 7 (2005), 2510–2522.
- [Tau95] Taubin G.: A signal processing approach to fair surface design. In SIGGRAPH (1995), pp. 351–358.
- [Tau00] Taubin G.: Geometric signal processing on polygonal meshes. In Eurographics State-of-the-Art Report (2000).
- [TB97] Trefethen L. N., Bau D.: Numerical Linear Algebra. SIAM, Philadelphia , PA , USA , 1997.
- [TL00] Tenenbaum J. B., Langford J. C.: A global geometric framework for nonlinear dimensionality reduction. Science, 290, 5500 (2000), 2319–2323.
- [Tut63]
Tutte W. T.: How to draw a graph.
Proc. London Math. Society, 13 (1963), 743–768.
10.1112/plms/s3-13.1.743 Google Scholar
- [Ume88] Umeyama S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pat. Ana. & Mach. Int., 10, 5 (1988), 695–703.
- [vL06] Von Luxburg U.: A Tutorial on Spectral Clustering. Tech. Rep. TR-149, Max Plank Institute for Biological Cybernetics , August 2006.
- [VL08] Vallet B., Lévy B.: Spectral geometry processing with manifold harmonics. Computer Graphics Forum (Eurographics), 27, 2 (2008), 251–260.
- [vLBB05] Von Luxburg U., Bousquet O., Belkin M.: Limits of spectral clustering. In Advances in Neural Information Processing Systems (NIPS) (2005), vol. 17, pp. 857–864.
- [VM03] Verma D., Meila M.: A comparison of spectral clustering algorithms. Tech. Rep. UW-CSE-03-05-01, University of Washington , 2003.
- [VS01] Vranić D. V., Saupe D.: 3D shape descriptor based on 3D Fourier transform. In Proc. EURASIP Conf. on Digital Signal Processing for Multimedia Communications and Services (2001).
- [WBH*07] Wardetzky M., Bergou M., Harmon D., Zorin D., Grinspun E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des., 24, 8–9 (2007), 499–518.
- [Wei99] Weiss Y.: Segmentation using eigenvectors: A unifying view. In Proc. Int. Conf. on Comp. Vis. (1999), pp. 975–983.
- [WMKG07] Wardetzky M., Mathur S., Kälberer F., Grinspun E.: Discrete Laplace operators: no free lunch. In Proc. Eurographics Symp. on Geometry Processing (2007), pp. 33–37.
- [Xu04a] Xu G.: Convergent discrete Laplace-Beltrami operators over triangular surfaces. In Proc. of Geometric Modeling and Processing (2004), pp. 195–204.
- [Xu04b] Xu G.: Discrete Laplace-Beltrami operators and their convergence. Comput. Aided Geom. Des., 21, 8 (2004), 767–784.
- [ZB04] Zhang H., Blok H. C.: Optimal mesh signal transforms. In Proc. of Geometric Modeling and Processing (2004), pp. 373–379.
- [ZF03] Zhang H., Fiume E.: Butterworth filtering and implicit fairing of irregular meshes. In Proc. of Pacific Graphics (2003), pp. 502–506.
- [Zha04] Zhang H.: Discrete combinatorial Laplacian operators for digital geometry processing. In Proc. SIAM Conf. on Geom. Design and Comp. (2004), pp. 575–592.
- [ZKK02] Zigelman G., Kimmel R., Kiryati N.: Texture mapping using surface flattening via multidimensional scaling. IEEE Trans. Vis. & Comp. Graphics, 8, 2 (2002), 198–207.
- [ZL05] Zhang H., Liu R.: Mesh segmentation via recursive and visually salient spectral cuts. In Proc. of Vision, Modeling, and Visualization (2005).
- [ZR72] Zahn C. T., Roskies R. Z.: Fourier descriptors for plane closed curves. IEEE Trans. on Computers, 21, 3 (1972), 269–281.
- [ZSGS04] Zhou K., Snyder J., Guo B., Shum H.-Y.: Iso-charts: Stretch-driven mesh parameterization using spectral analysis. In Proc. Eurographics Symp. on Geometry Processing (2004).
- [ZW05] Zhu P., Wilson R. C.: A study of graph spectra for comparing graphs. In Proc. of British Machine Vision Conference (2005).