Micromechanical Devices
Sylvain Martel
Ecole Polytechnique Montreal, Montreal, Quebec, Canada
Search for more papers by this authorSylvain Martel
Ecole Polytechnique Montreal, Montreal, Quebec, Canada
Search for more papers by this authorAbstract
The miniaturization of mechanical systems, and more specifically micromechanical devices, promise new opportunities in many biomedical applications because of their specific characteristics. These micromechanical devices are much smaller, lighter, faster (e.g., higher resonant frequency), and often more precise or sensitive than their macroscopic counterparts. In particular, micromechanical devices present opportunities in assisting in diagnostic, surgical, and therapeutic applications. Micromechanical devices are also often referred to as micro-electromechanical systems (MEMS) when combined with electronics, and when conceived for a particular biotechnology-based application, they are often referred to as bioMEMS (bio-micro-electromechanical systems). Today, micromechanical devices exist in many environments such as automotive, consumer, industrial, aerospace, and biomedical. Biomedical applications for micromechanical devices are an area that is forecast to experience substantial growth. An example is the implantable and disposable blood pressure sensor, one of the earliest bioMEMS applications, which continues to grow. MEMS-based lab-on-a-chip for point-of-care diagnostics on a patient is another promising application in biomedical where the time and cost associated with conventional methods can be reduced significantly. Of particular interest in the biomedical field are micromechanical devices such as microtransducers in the form of micromechanical sensors and micromechanical actuators including micromotors.
Bibliography
- 1N. Maluf, An Introduction to Microelectromechanical Systems Engineering. Norwood, MA: Artech House MEMS Library, 2000.
- 2F. E. H. Tay, Microfluidics and BioMEMS applications. Dordrecht, the Netherlands: Kluwer, 2002.
10.1007/978-1-4757-3534-5 Google Scholar
- 3J. W. Gardner, V. K. Varadan, and O. O. Awadelkarim, Microsensors, MEMS and Smart Devices. 1st ed., New York: John Wiley, 2001.
10.1002/9780470846087 Google Scholar
- 4R. J. Wiegerink and M. Elwenspoek, Mechanical Microsensors. 1st ed., New York: Springer Verlag, 2001.
- 5M. Tabib-Azar, Microactuators: Electrical, Magnetic, Thermal, Optical, Mechanical, Chemical, and Smart Structures. 1st ed., Dordrecht, the Netherlands: Kluwer, 1997.
- 6R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, Micromechanical cantilever as an ultrasensitive pH microsensor. Appl. Phys. Lett. 2002; 81(16): 3091–3093.
- 7D. G. Buerk, Biosensors: Theory and Applications. Lancaster, PA: Technomic, 1995.
- 8D. L. Polla, A. G. Erdman, W. P. Robbins, D. T. Markus, J. Diaz-Diaz, R. Rizq, Y. Nam, and H. T. Bricker, Microdevices in medicine. Annu. Rev. Biomed. Eng. 2000; 2: 551–576.
- 9S. N. Brahmasandra, B. N. Johnson, J. R. Webster, K. Handique, D. T. Burke et al., A microfabricated dluidic reaction and separation system for integrated DNA analysis. Micro Total Anal. Syst. 1998; 2: 267–270.
10.1007/978-94-011-5286-0_63 Google Scholar
- 10J. Cheng, E. L. Shelson, L. Wu, A. Uribe, L. O. Gerrue et al., Electric field controlled preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nat. Biotechnol. 1998; 16: 541–546.
- 11R. Bardell, N. R. Sharma, N. R. Forster, M. A. Afromowitz, and R. Penney, Designing high-performance micro-pumps based on no-moving parts. ASME Int. Mech. Eng. Congr. Expo., 1997: 47–53.
- 12P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton et al., PCR detection of bacteria in seven minutes. Science 1999: 284: 449–450.
- 13R. C. Anderson, G. J. Bogdan, A. Puski, and X. Su, Advances in integrated genetic analysis. Micro Total Anal. Syst. 1998; 2: 11–16.
- 14T. B. Taylor, P. M. St. John, and M. Albin, Microgenetic analysis systems. Micro Total Anal. Syst. 1998; 2: 261–266.
10.1007/978-94-011-5286-0_62 Google Scholar
- 15K. E. Peterson, W. A. McMillan, G. T. A. Kovacs, M. A. Northrum, L. A. Christel, and F. Pourahmadi, Toward next generation clinical diagnostic instruments: scaling and new processing algorithms. Biomed. Microdevices 1998; 1: 71–80.
- 16S. T. Wereley, C. D. Meinhart, J. G. Santiago, and R. J. Adrian, Velocimetry for MEMS applications. Proc. Int. Mech. Eng. Congr. Expo., 1998.
- 17R. H. Carlson, C. Gabel, S. Chan, and R. Austin, Self-sorting of white blood cells in a lattice. Phys. Rev. Lett. 1997; 15: 2149–2152.
- 18A. T. Wooley and R. A. Mathies, Ultrahigh-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Nat. Acad. Sci. 1994; 91: 11348–11352.
- 19L. Bousse, A. Minalla, M. Deshpande, K. B. Greiner, and J. R. Gilbert, Optimization of sample injection components in electrokinetic microfluidic systems. 12th IEEE Int. Microelectromechanical Syst. Conf. 1999: 309–314.
- 20R. H. Carlson, C. Gabel, S. Chan, and R. H. Austin, Activation and sorting of human white blood cells. Biomed. Microdevices 1998: 1: 39–48.
- 21G. M. Whitesides, Unconventional methods and unconventional materials for microfabrication. Proc. 8th Int. Conf. Solid-State Sens. Actuators 1997; 1:23–24.
- 22F. S. Ligler, C. A. Rowe, S. A. Bladerson, M. J. Feldstein, and J. P. Golden, Fluorescence array biosensor: biochemistry and application. Micro Total Anal. Syst. 1998: 217–220.
- 23R. Garabedian, C. Gonzalez, J. Richards, A. Knoesen, R. L. Smith et al., Microfabricated surface-plasmon sensing system. Sens. Actuators A 1994; 43: 202–208.
- 24J. D. Richards, R. Garabedian, C. Gonzalez, A. Knoesen, R. L. Smith et al., Surface-plasmon excitation using a polarization-preserving optical fiber and an index-matching fluid optical cell. Appl. Opt. 1992; 32: 2901–2903.
- 25R. L. Smith, Y.-T. Hsueh, S. D. Collins, J.-C. Fiaccabrino, and M. Koudelka, Electrochemiluminescense at microelectrodes for biosensing. BIOS 97, Symp. Micro-Nanofabr. Electro-Opt. Mech. Syst. Biomed. Environ. Appl., 1997.
- 26Y. Hsueh, S. D. Collins, and R. L. Smith, DNA quantification with an electrochemiluminescence microcell. Digest, 9th Int. Conf. Solid-State Sens. Actuators, Transducers 97, 1997 (Extended abstract).
- 27J. Diaz-Diaz, Microfabricated mass spectrometer, MS thesis, University of Minnesota, Minneapolis, MN, 1998.
- 28R. C. McGlennen, S. Zurn, D. Charych, and D. L. Paula, Molecular recognition cantilever. Proc. 9th Int. Symp. Integr. Ferroelectr. 1997: 97–100.
- 29P. Galambos and F. K. Forster, Micro-fluidic diffusion coefficient measurement. Micro Total Anal. Syst. 1998; 2: 189–192.
10.1007/978-94-011-5286-0_46 Google Scholar
- 30M. A. Northrup, C. Gonzalez, D. Hadley, R. F. Hills, P. Lander et al., A MEMS-based miniature DNA analysis system. Proc. 8th IEEE Int. Conf. Solid-State Sens. Actuators, 1995: 764–767.
- 31N. Chiem, C. Colyer, and D. J. Harrison, Microfluidic systems for clinical diagnostics. IEEE Int. Conf. Sensors Actuators, 1997: 183.
- 32M. Madou and J. Joseph, Immunosensors with commercial potential. Immunomethods 1993; 3: 134–152.
- 33A. H. Meng, A. W. Wang, and R. M. White, Ultrasonic sample concentration for microfluidic systems. Proc. 10th Int. Conf. Solid-State Sensors, Actuators, 1999: 247–251.
- 34A. W. Wang, R. Kiwan, R. M. White, and R. L. Ceriani, A silicon-based ultrasonic immunoassay for detection of breast cancer antigens. Sens. Actuators B 1998; 49: 13–21.
- 35A. Lal, Silicon-based ultrasonic surgical actuators, Proc. 20th Annu. Int. Conf. IEEE Eng., 1998: 2785–2790.
- 36J. H. Kim, L. Wang, S. M. Zurn, L. Li, Y. S. Yoon, and D. L. Polla, Fabrication process of PZT piezoelectric cantilever unimorphs using surface micromachining. Integr. Ferroelectr. 1997; 15: 325–332.
- 37J. A. Costin, Integrated phacoemulsidication system. US Patent 5733256, 1998.
- 38A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, and M. A. Northrup, A practical microgripper by fine alignment, eutectic bounding and SMA actuation. Proc. 8th Int. Conf. Solid-State Sens. Actuators 1995: 326–330.
- 39M. L. Yarmush, The future of tissue engineering. Microsyst. Technol. Med. Biol. Program, Cambridge Health Tech. Institute, 1998.
- 40S. L. Nyberg, R. A. Shatford, M. V. Peshway, J. G. White, F. B. Cerra, and W. S. Hu, Evaluation of a hepatocyte-entrapment hollow fiber bioreactor: a potential bioartificial liver. Biotech. Bioeng. 1993; 41: 194–203.
- 41C. Gonzalez, J. Y. Pan, S. D. Collins, and R. L. Smith, Packaging technology for miniature ICD instrumentation. Med. Dev. Diagn. Ind. 1998; 20(4): 70–75.
- 42C. C. Jung, S. B. Saban, S. S. Yee, and R. B. Darling, Chemical electrode surface plasmon resonance sensor. Sens. Actuators B 1996; 32: 143–147.
- 43D. Maillefer, H. van Lintel, G. Rey-Mermet, and R. Hirschi, A high-performance silicon micropump for implantable drug delivery system. 12th IEEE Int. Micro Electro. Mech. Syst. Conf. 1999: 541–546.
- 44G. Lin, K. S. J. Pister, and K. P. Roos, Micro-scale force transducer system to quantify isolated heart cell contractile characteristics. Sens. Actuators A 1995; 26(1–3): 233–236.
- 45D. A. Borkholder, J. Bao, M. I. Maluf, E. R. Perl, and G. T. A. Kovacs, Microelectrode arrays for stimulation of neural slice preparations. J. Neurosci. Meth. 1997; 77: 61–66.
- 46J. R. Schullek, J. H. Butler, Z.-J. Ni, D. Chen, and Z. Yuan, A high density screening format for encoded combinatorial libraries: assay miniaturization an its application to enzymatic reactions. Anal. Biochem. 1997; 246: 20–29.
- 47S. E. McBride, R. M. Moroney, and W. Chiang, Electrohydrodynamic pumps for high density microfluidic arrays. Micro Total Anal. Syst. 1998; 2: 45–48.
10.1007/978-94-011-5286-0_10 Google Scholar
- 48S. N. Laxminarayan, J. L. Coatrieux, C. J. Roux, S. M. Finkelstein, A. V. Sahakian, and S. M. Blanchard, Biomedical information technology: medicine and health care in the digital future. Trans. Inf. Biomed. 1997; 1: 1–7.
- 49J. Pine, A novel silicon neurowell for studies of neural systems in vitro and in vivo. Microsyst. Technol. Med. Biol., Cambridge Healthtech Inst., 1998.
- 50I. R. Lauks, Biosensors and point of care blood testing instrumentation. Microsyst. Technol. Med. Biol., Cambridge Healthtech Inst., 1998.
- 51P. Gwynne, Microfluidics on the move: devices offer many advantages, OE Reports, Technology and Trends for the International Optical Engineering Community. The International Society for Optical Engineering, 2000.
- 52M. Koch, A. Evans, and A. Brunnschweiler, Microfluidic Technology and Applications. Hertfordshire, England: Research Studies Press LTD, 2000.
- 53M. Madou, Fundamentals of Microfabrication. New York: CRC Press, 1997.
10.1145/331697.332307 Google Scholar
- 54W. M. van Spengen, R. Puers, and I. De Wolf, A physical model to predict stiction in MEMS. J. Micromech. Microeng. 2002; 12: 702–713.
- 55H. C. Nathanson and J. Guldberg, Topologically structured thin films in semiconductor device operation. Physics of Thin Films 1975; 8: 251–298.
- 56J. N. Israelachvili, Intermolecular and Surface Forces. New York: Academic Press, 1985.
- 57M. P. Boer, P. J. Clews, B. K. Smith, and T. A. Michalske, Adhesion of polysilicon microbeams in controlled humidity ambients. Proc. Mat. Res. Soc. Symp. 1995; 518: 131–136.
10.1557/PROC-518-131 Google Scholar
- 58R. L. Alley, P. Mai, K. Komvopoulos, and R. T. Howe, Surface roughness modification of internal contacts in polysilicon microstructures. Transducers 93, 1993: 288–291.
- 59Y. Yee, K. Chun, and J. D. Lee, Polysilicon surface modification technique to reduce sticking of microstructures. Transducers 95, 1995; 1: 206–209.
10.1109/SENSOR.1995.717142 Google Scholar
- 60E. W. Flosdorf, Freeze Drying: Drying by Sublimation. Ann Harbor, MI: University Microfilms International, 1982.
- 61J. D. Mellor, Fundamentals of Freeze Drying. New York: Academic Press, 1978.
- 62A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 1996; 69: 2653.
- 63A. Erbe et al., Appl. Phys. Lett. 1998; 73: 3751.
- 64J. A. Sigles, Phys. Rev. Lett. 1992; 68: 1124.
- 65M. Shinkiai, Functional magnetic particles for medical application. J. Biosci. Bioengineer. 2002; 94(6): 606–613.