Electrodes
André E. Aubert
University Hospital Gasthuisberg, Laboratory of Experimental Cardiology, K.U. Leuven, Leuven, Belgium
Search for more papers by this authorFrank Beckers
University Hospital Gasthuisberg, Laboratory of Experimental Cardiology, K.U. Leuven, Leuven, Belgium
Search for more papers by this authorBant Verheyden
University Hospital Gasthuisberg, Laboratory of Experimental Cardiology, K.U. Leuven, Leuven, Belgium
Search for more papers by this authorPaul van de Voorde
University Hospital Gasthuisberg, Laboratory of Experimental Cardiology, K.U. Leuven, Medtronic, Belgium
Search for more papers by this authorAndré E. Aubert
University Hospital Gasthuisberg, Laboratory of Experimental Cardiology, K.U. Leuven, Leuven, Belgium
Search for more papers by this authorFrank Beckers
University Hospital Gasthuisberg, Laboratory of Experimental Cardiology, K.U. Leuven, Leuven, Belgium
Search for more papers by this authorBant Verheyden
University Hospital Gasthuisberg, Laboratory of Experimental Cardiology, K.U. Leuven, Leuven, Belgium
Search for more papers by this authorPaul van de Voorde
University Hospital Gasthuisberg, Laboratory of Experimental Cardiology, K.U. Leuven, Medtronic, Belgium
Search for more papers by this authorAbstract
Electrodes are the interface between an energy source (electrical stimulator) and tissue (place where the stimulus has to be delivered). Electrode technology is a vast and difficult domain; it involves aspects of material science, biocompatibility, design techniques for geometry and implantation, fixation at tissue layers, electro-chemical reactions, physiology, cardiology, and all other body functions prone to be stimulated. All these aspects are briefly presented in this article. Biocompatibility and materials will be discussed related to electrodes, as this topic is also covered in other articles of this encyclopedia. Basically, electrodes are used externally (applied to the skin) as well as internally. Electrical stimulation is used for many functions. The major applications are in cardiology, for pain relief, for treatment of Parkinson's disease, for treatment of incontinence, and for gastroparesis. Cardiac applications will be highlighted more in this article.
Physiological, geometrical, and physical constraints must all be considered by bioengineers and medical doctors, thus leading to optimal sensing, stimulation, adequate thresholds, and long-term behavior after chronic clinical implantation.
Bibliography
- 1A. Sinnaeve, R. Willems, and R. Stroobandt Requirements of the ideal PM-lead. In: A. E. Aubert and H. Ector, eds., Pacemaker Leads. Amsterdam: Elsevier, 1985, pp. 47–55.
- 2A. Sinnaeve, R. Willems, and R. Stroobandt, Pacing and sensing: how can one electrode fulfill both requirements? Pace Pacing Clin. Electrophysiol. 1987; 10: 546–554.
- 3B. Ratner, Surface Characteristics of Biomaterials. Amsterdam: Elsevier, 1988.
- 4 A. E. Aubert and H. Ector, eds., Pacemaker Leads, vol. 2. Amsterdam: Elsevier, 1985.
- 5 G. E. Antonioli, A. E. Aubert, and H. Ector eds., Pacemaker Leads 1991. Amsterdam: Elsevier, 1991.
- 6 A. E. Aubert, H. Ector, and R. Stroobandt eds., Euro-Pace’93. Bologna: Monduzzi, 1993.
- 7 G. E. Antonioli eds., Pacemaker Leads 1997. Bologna: Monduzzi, 1997.
- 8M. Hirshorn, L. Holley, and J. Hales, et al., Screening of solid and porous materials for pacemaker electrodes. Pace Pacing Clin. Electrophysiol. 1981; 4: 380.
- 9L. Daliento, A. F. Folino, L. Menti, P. Zanco, M. C. Baratella, and V. S. Dalla, Adrenergic nervous activity in patients after surgical correction of tetralogy of Fallot. J. Am. Coll. Cardiol. 2001; 38: 2043–2047.
- 10M. Schaldach, New pacemaker electrodes. Trans. Am. Soc. Artif. Organs 1971; 17: 29.
- 11J. Helland and K. Stokes, Non-fibrosing cardiac pacing electrodes. U.S. Patent 4,033,357, 1976.
- 12M. Yamage and S. Perren, Influences of metal salts on immune responses in vitro. In: G. Van der Perre, and A. E. Aubert, Biomaterials and Biomechanics. Amsterdam: Elsevier, 1984, pp. 227–232.
- 13K. Mund, G. Richter, E. Weidlich, and U. Fahlstrom, Electrochemical properties of platinum, glassy carbon and pyrographite as stimulating electrodes. Pacing Clin. Electrophysiol. 1986; 9: 1225–1229.
- 14H. Mond and D. Grenz, Implantable transvenous pacing leads: the shape of things to come. Pace Pacing Clin. Electrophysiol. 2004; 27(PtII): 887–893.
- 15M. Schaldach, M. Hubmann, A. Weikl, and R. Hardt, Sputter deposited TiN electrode coatings for superior sensing and pacing performance. Pacing Clin. Electrophysiol. 1990; 13(12Pt2): 1891–1895.
- 16U. K. Wiegand, V. M. Zhdanov, E. Stammwitz, I. Crozier, R. J. Claessens, J. Meier, et al., Electrophysiological performance of a bipolar membrane-coating titanium nitride electrode: a randomized comparison of steroid and nonsteroid lead designs. Pacing Clin. Electrophysiol. 1999; 22: 935–941.
10.1111/j.1540-8159.1999.tb06818.x Google Scholar
- 17P. F. Johnson, J. J. Bernstein, G. Hunter, W. W. Dawson, and L. L. Hench, An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion, response, physiology and histology. J. Biomed. Mater. 1977; 11: 637–656.
- 18S. Adler, P. Spehr, J. Allen, and W. Block, Chronic animal testing of new cardiac pacing. Pacing Clin. Electrophysiol. 1990; 13: 1896–1900.
- 19M. J. Niebauer, B. Wilkoff, Y. Yamanouch, T. Mazgalev, K. Mowrey, and P. Topp, Iridium oxide-coated defibrillation electrode: reduced shock polarization and improved defibrillation efficacy. Circulation 1997; 96: 3732–3736.
- 20H. Elmqvist, H. Schueller, and G. Richter, The carbon tip electrode. Pacing Clin. Electrophysiol. 1983; 6: 436–439.
- 21H. Makino, Y. Saitoh, M. Yamazoe, F. Masani, Y. Mitamura, and T. Mikami, Catheter-type defibrillation electrode using glassy carbon: results of electrode implantation. Med. Biol. Eng. 1990; 2: 129–136.
- 22B. Garberoglio, B. Inguaggiato, B. Chinaglia, and O. Cerise, Initial results with an activated pyrolytic carbon tip electrode. Pacing Clin. Electrophysiol. 1983; 6: 440–448.
- 23M. Masini, M. Lazzari, R. Lorenzoni, A. M. Domicelli, A. Micheletti, R. Diaz, et al., Activated pyrolytic carbon tip pacing leads: an alternative to steroid-eluting pacing leads? Pacing Clin. Electrophysiol. 1996; 19: 1832–1835.
- 24T. Levy, S. Walker, S. Rex, and V. Paul, A comparison between passive and active fixation leads in the coronary sinus for biatrial pacing: initial experience. Europace 2000; 2: 228–232.
- 25R. A. Friedman, J. P. Moak, and A. Garson, Jr., Active fixation of endocardial pacing leads: the preferred method of pediatric pacing. Pacing Clin. Electrophysiol. 1991; 14: 1213–1216.
- 26P. Hamilton, R. Gow, B. Bahoric, et al., Steroid eluting leads in pediatrics: improved epicardial leads in the first year. Pace Pacing Clin. Electrophysiol. 1991; 14: 2066.
- 27K. Stokes, Preliminary studies on a new steroid eluting epicardial electrode. Pace Pacing Clin. Electrophysiol. 1988; 11: 1797.
- 28A. L. Goldberger, Clinical Electrocardiography: A Simplified Approach, 6th ed. St Louis, Mo: Mosby, 1999.
- 29W. Irnich, Engineering concepts of pacemaker electrodes. In: M. Schaldach and S. Furman eds., Advances in Pacemaker Technology. New York: Springer-Verlag, 1975, p. 241.
10.1007/978-3-642-66187-7_15 Google Scholar
- 30W. Irnich, Comparison of pacing electrodes of different shape and material–recommendations. Pacing Clin. Electrophysiol. 1983; 6: 422–426.
- 31A. E. Aubert, B. N. Goldreyer, M. G. Wyman, B. G. Denys, H. Ector, and H. DeGeest, Simultaneous right atrial appendage sensing with a target tip, a solid tip and J orthogonal electrodes. Am. J. Cardiol. 1987; 59: 610–614.
- 32B. G. Denys, A. E. Aubert, H. Ector, H. Kesteloot, and H. DeGeest, Intramyocardial pressure in the canine heart. An experimental study. J. Thorac. Cardiovasc. Surg. 1985; 90: 888–895.
- 33A. E. Aubert, Multisite biventricular pacing. Prog. Biomed. Res. 2002; 7: 1–3.
- 34A. E. Aubert, B. G. Denys, H. Ector, and H. DeGeest Electrode-Lead Systems for an Automatic Implantable Cardioverter-Defibrillator. In: A. E. Aubert and H. Ector, eds., Pacemaker Leads. Amsterdam: Elsevier, 1985, pp. 147–154.
- 35W. Verreydt, J. Van den Bossche, A. Van den Bossche, P. Van de Voorde, E. Witters, A. E. Aubert, et al., Automatic defibrillator, antitachy pacemaker and cardioverter. IEEE Comp. Cardiol. 1986; 13: 45–48.
- 36T. Cameron, Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20 year literature survey. J. Neurosurg. 2004; 100: 254–267.
- 37 Medtronic, Inc., Spinal cord stimulation: 1997.
- 38K. Ashkan, B. Wallace, B. A. Bell, and A. L. Benahid, Deep brain stimulation of the subthalamic nucleus in Parkinson's disease 1993–2003: where are we at 10 years on? Br. J. Neurosurg. 2004; 18: 19–34.
- 39Medtronic Europe SA, Activa Therapy, effective management for the cardinal symptoms of Parkinson's disease and for essential tremor. Medtronic Report, 2002.
- 40Medtronic Inc., Interstim therapy sacral nerve stimulation for urinary control. Medtronic Report, 2001.
- 41M. Dolman, Electromuscular stimulation for urinary incontinence: Levat100. Br. J. Community Nurs. 2000; 5: 214–220.
- 42D. C. Buckles, J. Forster, and R. W. McCallun, The treatment of gastroporesis in the age of the gastric pacemaker: a review. Med. Gen. Med. 2003; 9: 5–15.
- 43S. Furman, B. Parker, and D. J. W. Escher, Decreasing electrode size and increasing efficiency of cardiac stimulation. J. Surg. Res. 1971; 11: 105–111.
- 44S. Furman, P. Hurzler, and B. Parker, Clinical thresholds of endocardial cardiac stimulation: a long-term study. J. Surg. Res. 1975; 19: 149–157.
- 45L. A. Geddes and J. D. Bourland, The strength-duration curve. IEEE Trans. Biomed. Eng. BME 2003; 32: 458.
- 46D. A. Angello, J. H. McAnulty, and J. Dobbs, Characterization of chronically implanted ventricular endocardial pacing leads. Amer. Heart J. 1984; 107: 1142–1151.
- 47W. Irnich, Considerations in electrode design for permanent pacing. In: H. J. T. Thalen, ed., Cardiac Pacing, Proc. 4th Int. Symp. Cardiac Pacing. Assen: Van Gorcum, 1973, p. 286.
- 48K. Stokes, T. Bird, and R. Taepke, A new low threshold, high impedance microelectrode. In: G. E. Antonioli, A. E. Aubert, and H. Ector, eds., Pacemaker Leads. Amsterdam: Elsevier, 1991, pp. 543–548.
- 49S. Barold, L. Ong, and R. Heinle, Stimulation and sensing thresholds for cardiac pacing: electrophysiologic and technical aspects. Prog. Cardiovasc. Dis. 1981; 24: 1.
- 50N. Smyth, P. Tarjan, E. Chernoff, et al., The significance of electrode surface area and stimulating thresholds in permanent cardiac pacing. J. Thoracic. Cardiovasc. Surg. 1976; 71: 559.
- 51G. J. Wilson, D. C. McGregor, and J. D. Bobyn, Tissue response to porous surface electrodes: basis for a new atrial lead design. In: C. Moore, ed., Proc. 6th World Symposium on Cardiac Pacing. Montreal: Pacesymp, 1979.
- 52D. Amundson, D. McArthur, and M. Moshaffafa, The porous endocardial electrode. Pace Pacing Clin. Electrophysiol. 1979; 2: 40.
- 53D. Amundson, W. McArthur, and D. McArthur, Porous electrode tissue interface. In: C. Moore, ed., Proc. 6th World Symposium on Cardiac Pacing. Montreal: Pacesymp, 1979.
- 54D. C. McGregor, G. J. Wilson, W. Lixfield, et al., The porous surface electrode: a new concept in pacemaker lead design. J. Thorac. Cardiovasc. Surg. 1979; 78: 281.
- 55A. E. Aubert, B. N. Goldreyer, M. G. Wyman, H. Ector, B. G. Denys, and H. DeGeest, Sensing and pacing with floating electrodes in the right atrium and right atrial appendage. J. Am. Coll. Cardiol. 1987; 9: 308–315.
- 56A. E. Aubert, B. N. Goldreyer, M. E. Wyman, E. Jacquemlyn, H. Ector, and H. DeGeest, Filter characteristics of the atrial sensing circuit of a rate responsive pacemaker. To see or not to see. Pacing Clin. Electrophysiol. 1989; 12: 525–536.
- 57K. A. Ellenbogen, G. Kay, and B. Wikoff, Clinical Cardiac Pacing. Philadelphia, PA: Saunders Co., 1995, pp. 38–68.
- 58G. Myers, J. Y. Kresh, and V. Parsonnet, Characteristics of intracardiac electrograms. Pace Pacing Clin. Electrophysiol. 1978; 1: 90.
- 59V. Parsonnet, G. Myers, and Y. Kresh, Characteristics of intracardiac electrogram II. Atrial endocardial electrograms. Pace Pacing Clin. Electrophysiol. 1980; 3: 406.
- 60H. Mond and K. Stokes, The electrode-tissue interface: the revolutionary role of steroid elution. Pace Pacing Clin. Electrophysiol. 1992; 15: 95.
- 61O. Ohm, The interdependence between electrogram, total electrode impedance and pacemaker input impedance necessary to obtain adequate functioning of demand pacemakers. Pace Pacing Clin. Electrophysiol. 1992; 15: 1504.
- 62B. N. Goldreyer, A. E. Aubert, M. G. Wyman, B. G. Denys, and H. Ector, Orthogonal atrial appendage sensing. Pacing Clin. Electrophysiol. 1986; 9: 1211–1216.
- 63A. E. Aubert, H. Ector, B. G. Denys, and H. DeGeest, Unipolar lead sensing and bipolar orthogonal lead sensing. In: A. E. Aubert and H. Ector, eds., Pacemaker Leads. Amsterdam: Elsevier, 1985, pp. 15–26.
- 64A. E. Aubert, H. Ector, B. G. Denys, and H. DeGeest, Sensing characteristics of unipolar and bipolar orthogonal floating atrial electrodes: morphology and spectral analysis. Pacing Clin. Electrophysiol. 1986; 9: 343–359.
- 65G. E. Antonioli, Single A-V Lead Cardiac Pacing. Bologna: Arianna, 1999.