Growth Kinetics and Competition Between Methanosarcina and Methanosaeta in Mesophilic Anaerobic Digestion
Anne Conklin
Search for more papers by this authorH. David Stensel
Search for more papers by this authorJohn Ferguson
Search for more papers by this authorAnne Conklin
Search for more papers by this authorH. David Stensel
Search for more papers by this authorJohn Ferguson
Search for more papers by this authorAbstract
Methanosarcina species with a high maximum specific growth rate (μmax) and high half-saturation coefficient (K S) and Methanosaeta species with a low μmax and low K S are the only known aceticlastic methanogens. Because of Methanosaeta's low K S, the low acetate concentrations in conventional, mesophilic anaerobic digestion yield Methanosaeta dominance. However, Methanosarcina absorbs increases in acetate more efficiently and thus promotes more stable digestion. This paper tests the hypothesis that decreasing digester feeding frequencies can increase Methanosarcina predominance. Two acetate-fed reactors were established at a 17-day solids retention time. One reactor was fed hourly, and one was fed once daily. Microscopic and molecular methods were used to verify that the hourly fed reactor enriched for Methanosaeta, while the daily fed reactor enriched for Methanosarcina. Growth and substrate-use kinetics were measured for each reactor. A digester overload condition was simulated, and the Methanosarcina-enriched reactor was found to perform better than the Methanosaeta-enriched reactor. These findings indicate that Methanosarcina dominance can be achieved with infrequent feedings, leading to more stable digestion.
References
- American Public Health Association; American Water Works Association; Water Environment Federation (1995) Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, D.C.
- Angenent, L. T.; Zheng, D. D.; Sung, S. H.; Raskin, L. (2002) Microbial Community Structure and Activity in a Compartmentalized, Anaerobic Bioreactor. Water Environ. Res., 74, 450-- 1 – 61.
- Boone, D. R.; Whitman, W. B.; Rouviere, P. (1993) Diversity and Taxonomy of Methanogens. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. J. G. Ferry (Ed.); Chapman & Hall, Inc.: New York, p. 36 – 67.
- Conklin, A. S.; Zahller, J. D.; Bucher, R. H.; Stensel, H. D.; Ferguson, J. F. (2004) Acetoclastic and Hydrolytic Activity in Anaerobic Digestion---Keys to Process Stability. Proceedings of the 10th World Congress Anaerobic Digestion Conference, Vol. 2, Montreal, Quebec, Aug. 29--Sept. 2; International Water Association: London, p. 833.
- Fernández, A.; Huang, S. Y.; Seston, S.; Xing, J.; Hickey, R.; Criddle, C.; Tiedje, J. (1999) How Stable Is Stable? Function Versus Community Composition. Appl. Environ. Microbiol., 65, 3697 – 3704.
- Fernandez, A. S.; Hashsham, S. A.; Dollhopf, S. L.; Raskin, L.; Glagoleva, O.; Dazzo, F. B.; Hickey, R. F.; Criddle, C. S.; Tiedje, J. M. (2000) Flexible Community Structure Correlates with Stable Community Function in Methanogenic Bioreactor Communities Perturbed by Glucose. Appl. Environ. Microbiol., 66, 4058--- 4067.
- Fukuzaki, S.; Nishio, N.; Nagai, S. (1990) Kinetics of the Methanogenic Fermentation of Acetate. Appl. Environ. Microbiol., 56, 3158 – 3163.
- Griffin, M. E.; McMahon, K. D.; Mackie, R. I.; Raskin, L. (1998) Methanogenic Population Dynamics During Start-Up of Anaerobic Digesters Treating Municipal Solid Waste and Biosolids. Biotechnol. Bioeng., 57, 342 – 355.
10.1002/(SICI)1097-0290(19980205)57:3<342::AID-BIT11>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- Grotenhuis, J. T. C.; Smit, M.; Plugge, C. M.; Xu, Y. S.; VanLammeren, A. A. M.; Stams, A. J. M.; Zehnder, A. J. B. (1991) Bacteriological Composition and Structure of Granular Sludge Adapted to Different Substrates. Appl. Environ. Microbiol., 57, 1942 – 1949.
- Gujer, W.; Zehnder, A. J. B. (1983) Conversion Processes in Anaerobic Digestion. Water Sci. Technol., 15, 127 – 167.
- Hashsham, S. A.; Fernandez, A. S.; Dollhopf, S. L.; Dazzo, F. B.; Hickey, R. F.; Tiedje, J. M.; Criddle, C. S. (2000) Parallel Processing of Substrate Correlates with Greater Functional Stability in Methanogenic Bioreactor Communities Perturbed by Glucose. Appl. Environ. Microbiol., 66, 4050 – 4057.
- Hoover, S. R.; Porges, N. (1952) Assimilation of Dairy Wastes by Activated Sludge---II. The Equation of Synthesis and Rate of Oxygen Utilization. Sewage Ind. Wastes, 24, 306 – 312.
- Huser, B. A.; Wuhrmann, K.; Zehnder, A. J. B. (1982) Methanothrix soehngenii gen. nov. sp. nov., a New Acetotrophic Non-Hydrogen-Oxidizing Methane Bacterium. Arch. Microbiol., 132, 1 – 9.
- Jeris, J. S.; McCarty, P. L. (1965) The Biochemistry of Methane Fermentation Using C14 Tracers. J. Water Pollut. Control Fed., 37, 178 – 192.
- Kida, K.; Shigematsu, T.; Kijima, J.; Numaguchi, M.; Mochinaga, Y.; Abe, N.; Morimura, S. (2001) Influence of Ni2- and Co2+ on Methanogenic
- Activity and the Amounts of Coenzymes Involved in Methanogenesis. J. Biosci. Bioeng., 91, 590 – 595.
- Leclerc, M.; Delbes, C.; Moletta, R.; Godon, J. J. (2001) Single Strand Conformation Polymorphism Monitoring of 16S rDNA Archaea During Start-Up of an Anaerobic Digester. FEMS Microbiol. Ecol., 34, 213 – 220.
- Leclerc, M.; Delgenes, J. P.; Godon, J.-J. (2004) Diversity of the Archaeal Community in 44 Anaerobic Digesters as Determined by Single Strand Conformation Polymorphism Analysis and 16S rDNA Sequencing. Environ. Microbiol., 6, 809 – 819.
- Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. (1951) Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem., 193, 265 – 275.
- Ludwig, W.; Strunk, O.; Westram, R.; Richter, L.; Meier, H.; Yadhukumar; Buchner, A.; Lai, T.; Steppi, S.; Jobb, G.; et al. (2004) ARB: A Software Environment for Sequence Data. Nucleic Acids Res., 32, 1363 – 1371.
- Mah, R. A. (1980) Isolation and Characterization of Methanococcus mazei. Curr. Microbiol., 3, 321 – 326.
- Mah, R. A.; Smith, M. R.; Baresi, L. (1978) Studies on an Acetate Fermenting Strain of Methanosarcina. Appl. Environ. Microbiol., 35, 1174 – 1184.
- McHugh, S.; Carton, M.; Mahony, T.; O'Flaherty, V. (2003) Methanogenic Population Structure in a Variety of Anaerobic Bioreactors. FEMS Microbiol. Lett., 219, 297 – 304.
- Ohtsubo, S.; Demizu, K.; Kohno, S.; Miura, I.; Ogawa, T.; Fukuda, H. (1992) Comparison of Acetate Utilization Among Strains of an Aceticlastic Methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol., 58, 703 – 705.
- Patel, G. B. (1984) Characterization and Nutritional Properties of Methanothrix concilii sp. nov., a Mesophilic, Aceticlastic Methanogen. Can. J. Microbiol., 30, 1383 – 1396.
- Rajoka, M. I.; Tabassum, R.; Malik, K. A. (1999) Enhanced Rate of Methanol and Acetate Uptake for Production of Methane in Batch Cultures Using Methanosarcina mazei. Bioresour. Technol., 67, 305 – 311.
10.1016/S0960-8524(98)00112-6 Google Scholar
- Raskin, L.; Stromley, J. M.; Rittmann, B. E.; Stahl, D. A. (1994) Group-Specific 16S rRNA Hybridization Probes to Describe Natural Communities of Methanogens. Appl. Environ. Microbiol., 60, 1232 – 1240.
- Raskin, L.; Zheng, D. D.; Griffin, M. E.; Stroot, P. G.; Misra, P. (1995) Characterization of Microbial Communities in Anaerobic Bioreactors Using Molecular Probes. Antonie Van Leeuwenhoek, 68, 297 – 308.
- Scherer, P.; Sahm, H. (1981) Influence of Sulfur-Containing Compounds on the Growth of Methanosarcina barkeri in a Defined Medium. Eur. J. Appl. Microbiol. Biotechnol., 12, 28 – 35.
- Schönheit, P.; Kristjansson, J. K.; Thauer, R. K. (1982) Kinetic Mechanism for the Ability of Sulfate Reducers to Out-Compete Methanogens for Acetate. Arch. Microbiol., 132, 285 – 288.
- Sekiguchi, Y.; Kamagata, Y.; Syutsubo, K.; Ohashi, A.; Harada, H.; Nakamura, K. (1998) Phylogenetic Diversity of Mesophilic and Thermophilic Granular Sludges Determined by 16S rRNA Gene Analysis. Microbiol., 144, 2655 – 2665.
- Shelton, D. R.; Tiedje, J. M. (1984) General Method for Determining Anaerobic Biodegradation Potential. Appl. Environ. Microbiol., 47, 850 – 857.
- Shigematsu, T.; Tang, Y.; Kawaguchi, H.; Ninomiya, K.; Kijima, J.; Kobayashi, T.; Morimura, S.; Kida, K. (2003) Effect of Dilution Rate on Structure of a Mesophilic Acetate-Degrading Methanogenic Community During Continuous Cultivation. J. Biosci. Bioeng., 96, 547 – 558.
- Shih, C. C.; Davey, M. E.; Zhou, J. Z.; Tiedje, J. M.; Criddle, C. S. (1996) Effects of Phenol Feeding Pattern on Microbial Community Structure and Cometabolism of Trichloroethylene. Appl. Environ. Microbiol., 62, 2953 – 2960.
- Smith, M. R.; Mah, R. A. (1980) Acetate as Sole Carbon and Energy Source for Growth of Methanosarcina Strain 227. Appl. Environ. Microbiol., 39, 993 – 999.
- Smith, M. R.; Mah, R. A. (1978) Growth and Methanogenesis by Methanosarcina Strain 227 on Acetate and Methanol. Appl. Environ. Microbiol., 36, 870 – 879.
- Smith, P. H.; Mah, R. A. (1966) Kinetics of Acetate Metabolism During Sludge Digestion. Appl Microbiol., 14, 368 – 371.
- Sowers, K. R. (1995) Methanogenic Archaea: An Overview. In Archaea: A Laboratory Manual. F. T. Robb, A. R. Place, K. R. Sowers, H. J. Schreier, S. DasSarma, E. M. Fleischmann, (Eds.); Cold Spring Harbor Laboratory Press: Woodbury, New York, p. 3 – 13.
- Speece, R. E. (1996) Anaerobic Biotechnology for Industrial Wastewaters. Archaea Press: Nashville, Tennessee.
- Tchobanoglous, G.; Burton, F. L.; Stensel, H. D. (2003) Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw Hill: Boston, Massachusetts.
- Wandrey, C.; Aivasidis, A. (1983) Continuous Anaerobic Digestion with Methanosarcina barkeri. Ann. NY Acad. Sci., 413, 489 – 500.
- Weimer, P. J.; Zeikus, J. G. (1978) Acetate Metabolism in Methanosarcina barkeri. Arch. Microbiol., 119, 175 – 182.
- Yu, Y.; Lee, C.; Hwang, S. (2004) Analysis of Community Structures in Anaerobic Processes Using Quantitative Real-Time PCR Method. Proceedings of the 10th World Congress Anaerobic Digestion Conference, Montreal, Quebec, Aug. 29-Sept. 2; International Water Association: London, p. 459 – 465.
- Zehnder, A. J. B.; Huser, B. A.; Brock, T. D.; Wuhrmann, K. (1980) Characterization of an Acetate-Decarboxylating, Non-Hydrogen-Oxidizing Methane Bacterium. Arch. Microbiol., 124, 1 – 11.
- Zumstein, E.; Moletta, R.; Godon, J. J. (2000) Examination of Two Years of Community Dynamics in an Anaerobic Bioreactor Using Fluorescence Polymerase Chain Reaction (PCR) Single-Strand Conformation Polymorphism Analysis. Environ. Microbiol., 2, 69 – 78.