Studies on the Radiolytically Produced Transients of Neutral Red: Triplet and Reduced Radicals
M. K. Singh
Spectroscopy Division, Bhabha Atomic Research Center, Mumbai, India
Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Mumbai, India
Search for more papers by this authorCorresponding Author
H. Pal
Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Mumbai, India
*To whom correspondence should be addressed at: Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Fax: 91-22-5505151; [email protected]Search for more papers by this authorCorresponding Author
A. V. Sapre
Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Mumbai, India
*To whom correspondence should be addressed at: Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Fax: 91-22-5505151; [email protected]Search for more papers by this authorM. K. Singh
Spectroscopy Division, Bhabha Atomic Research Center, Mumbai, India
Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Mumbai, India
Search for more papers by this authorCorresponding Author
H. Pal
Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Mumbai, India
*To whom correspondence should be addressed at: Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Fax: 91-22-5505151; [email protected]Search for more papers by this authorCorresponding Author
A. V. Sapre
Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Mumbai, India
*To whom correspondence should be addressed at: Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Fax: 91-22-5505151; [email protected]Search for more papers by this authorABSTRACT
The spectral and kinetic properties of reduced radicals and the triplet state of neutral red (NR), a phenazine-based dye, have been investigated using pulse radiolysis technique. A mixed water–isopropanol–acetone solvent has been used to study the reduced radicals of NR for a wide pH range of about 1–13, due to limitation of solubility of the dye in aqueous solutions particularly above pH 8. From pH-dependent absorption studies it has been established that the reduced radicals of NR can exist in four different prototropic forms in solution. Three pKa values for the corresponding prototropic equilibria have been estimated. The formation and decay rate constants of reduced radicals have also been measured. The triplet state characteristics of the dye have been investigated in neat benzene solutions, both in the presence and in the absence of triplet sensitizers. The T1→ Tn absorption spectrum and decay kinetics of the triplet state have been measured. The triplet state energy (ET) of NR in benzene have been estimated to be within 36–42 kcal mol−1, using an energy transfer method.
REFERENCES
- 1 Gaullier, J. M., M. Geze, R. Santus, T. Sa e Melo, J. C. Maziere, M. Bazin, P. Morliere, L. Dubertret (1995) Subcellular localization of and photosensitization by protoporphyrin IX in human keratinocytes and fibroblasts cultivated with 5-aminolevulinic acid. Photochem. Photobiol, 62, 114–122.
- 2 Osborne, R., M. A. Perkins (1994) An approach for development of alternative test methods based on mechanism of skin irritation. Food Chem. Toxicol, 32, 133–142.
- 3 Haumann, M., W. Junge (1994) Extent and rate of proton release by photosynthetic water oxidation in thylakoides. Electrostatic relaxation versus chemical production. Biochemistry, 33, 864–872.
- 4 Lamanna, J. C., K. A. McCracken (1984) The use of neutral red as an intracellular pH indicator in rat brain cortex in vivo. Anal. Biochem, 142, 117–125.
- 5 Essig-Marcello, J. S., R. S. Van Buskrik (1990) A double-label in situ cytotoxicity assay using the fluorescent probes neutral red and BCECF-AM. In Vitro Toxicol, 3, 219–227.
- 6 Allison, A. C., I. A. Magnus, M. R. Young (1966) Role of lysosomes and of cell membranes in photosensitization. Nature, 209, 874–878.
- 7 Walz, F. G., Jr., B. Terenna, D. Rolinee (1975) Equilibrium studies on neutral red-DNA binding. Biopolymers, 14, 825–837.
- 8 Marks, G. T., E. D. Lee, D. A. Aikens, H. H. Richtol (1984) Transient photochemistry of neutral red. Photochem. Photobiol, 39, 323–328.
- 9 Hamed, M. M. A. (1993) Solvent effect on the electronic spectral characteristics of neutral red. Can. J. App. Spectrosc, 38, 77–81.
- 10 Sousa, C., T. Sa e Melo, M. Geze, J. Gaullier, J. C. Maziere, R. Santus (1996) Solvent polarity and pH effects on the spectroscopic properties of neutral red: application to lysosomal microenvironment probing in living cells. Photochem. Photobiol, 63, 601–607.
- 11 Aaron, J. J., M. Maafi, C. Parkanyi, C. Boniface (1994) Quantitative treatment of the solvent effects on the electronic absorption and fluorescence spectra of acridines and phenazines. The ground and excited singlet-state dipole moments. Spectrochim. Acta, 51A, 603–615.
- 12
Yates, P. C.,
B. Patel (1994) Semiempirical molecular orbital calculations on dye molecules.
J. Mol. Struct. Theochem, 315, 117–122.
10.1016/0166-1280(94)03786-K Google Scholar
- 13 Singh, M. K., H. Pal, A. C. Bhasikuttan, A. V. Sapre (1998) Dual solvatochromism of neutral red. Photochem. Photobiol, 68, 32–38.
- 14 Singh, M. K., H. Pal, A. C. Bhasikuttan, A. V. Sapre (1999) Photophysical properties of the cationic form of neutral red. Photochem. Photobiol, 69, 529–535.
- 15 Sudo, Y., T. Krasnovskii, F. Toda 1980 The trans-membrane electron transport coupled with dye redox cycle in liposome system Chem. Lett. pp. 355–358
- 16 Müller, V. 1957 Colorimetric measurement of the absorbed dose of ionizing rays Chem Abstr. 51 4067
- 17 Guha, S. N., P. N. Moorthy, J. P. Mittal 1993 Redox reactions of neutral red. A pulse radiolysis study J. Chem. Soc. Perkin Trans 2 pp. 409–415
- 18 Chibisov, A. K., V. B. Skvortsov, A. V. Karakin, L. N. Rygalov (1969) Transient states in photochemical reaction of dyes III. Flash photolysis of phenosafranine and neutral red in aqueous solutions. Khim. Vys Energ, 3, 210–216.
- 19 Pal, H., T. Mukherjee, J. P. Mittal (1994) Pulse radiolytic one-electron reduction of 2-hydroxy- and 2,6-dihydroxy 9,10-anthaquinones. J. Chem. Soc. Faraday Trans, 90, 711–716.
- 20 Pal, H., T. Mukherjee, J. P. Mittal (1994) One electron reduction of 9,10-anthraquinone, 1-amino-9,10-anthraquinone and 1-hydroxy-9,10-anthraquinone in aqueous-isopropanol–acetone mixed solvent: a pulse radiolysis study. Radiat. Phys. Chem, 44, 603–609.
- 21 Pal, H., D. K. Palit, T. Mukherjee, J. P. Mittal (1992) Pulse radiolytic one electron reduction of 1,4-amino and hydroxy disubstituted 9,10-anthraquinone. Radiat. Phys. Chem, 40, 529–540.
- 22 Pal, H., D. K. Palit, T. Mukherjee, J. P. Mittal (1991) One electron reactions of 1,5 and 1,8-dihydroxy-9,10-anthraquinone. J. Chem. Soc. Faraday Trans, 87, 1109–1116.
- 23 Pal, H., D. K. Palit, T. Mukherjee, J. P. Mittal (1992) Triplet state and semiquinone radical of 5-methoxy-quinizarine: a laser flash photolysis and pulse radiolysis study. Ind. J. Chem, 31A, 811–816.
- 24 Mukherjee, T., A. J. Swallow, P. M. Guyan, J. M. Bruce (1990) One and two electron reduction of quinizarine and 5-methoxy quinizarine: a pulse radiolysis study. J. Chem. Soc. Faraday Trans, 86, 1483–1491.
- 25 Rath, M. C., H. Pal, T. Mukherjee (1996) One electron reactions of some hydroxynaphthaquinones: solvent and substitution effect as studied by pulse radiolysis. J. Chem. Soc. Faraday Trans, 92, 1891–1897.
- 26 Rath, M. C., H. Pal, T. Mukherjee (1996) Pulse radiolytic one electron reduction of anthraquinone and chloroanthraquinones in aqueous–isopropanol–acetone mixed solvent. Radiat. Phys. Chem, 47, 221–227.
- 27 Guha, S. N., P. N. Moorthy, K. Kishore, D. B. Naik, K. N. Rao (1987) One electron reduction of thionine studied by pulse radiolysis. Proc. Ind. Acad. Sci. (Chem. Sci.), 99, 261–271.
- 28 Adams, G. E., J. W. Boag, J. Currant, B. D. Michael 1965 The pulse radiolysis of aqueous solutions of thyocianate ions In Pulse Radiolysis (Edited by M. Ebert, J. P. Keene, A. J. Swallow and J. H. Baxendale), p. 17. Academic Press, London
- 29 Walz, F. G., Jr., B. Terenna, D. Rolinee (1975) Equilibrium studies on neutral red-DNA binding. Biopolymers, 14, 825–837.
- 30
Wardman, P. (1989) Reduction potentials of one electron couples involving free radicals in aqueous solutions.
J. Phys. Chem. Ref. Data, 18, 1637–1723.
10.1063/1.555843 Google Scholar
- 31
Swallow, A. J.
1982
Application of pulse radiolysis to the study of aqueous organic systems. In The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis (Edited by J. H. Baxendale and
F. Busi), p. 289. D. Reidel Publ. Co.,
Dordrecht
10.1007/978-94-009-7852-2_17 Google Scholar
- 32
Swallow, A. J.
1982
Physical Chemistry of semiquinones In Function of Quinones in Energy Conserving Systems (Edited by B. L. Trumpower), p. 59. Academic Press,
London
10.1016/B978-0-12-701280-3.50010-4 Google Scholar
- 33 Bhasikuttan, A. C., A. K. Singh, D. K. Palit, A. V. Sapre, J. P. Mittal (1998) Laser flash photolysis studies on the monohydroxy derivatives of benzophenones. J. Phys. Chem. A, 102, 3470–3480.
- 34
Bensasson, R.,
E. J. Land
1978
Physical properties of excited states: a general method for measuring triplet-triplet extinction coefficients, singlet-triplet intersystem crossing efficiencies and related parameters. In Photochemical and Photobiological Reviews, Vol. 3 (Edited by K. C. Smith), p. 163. Plenum Press,
New York
10.1007/978-1-4684-2580-2_5 Google Scholar
- 35 Birks, J. B. 1970 Photophysics of Aromatic Molecules Wiley Interscience, New York .
- 36 Carmichael, I., G. L. Hug (1986) Triplet–triplet absorption spectra of organic molecules in condensed phases. J. Phys. Chem. Ref. Data, 15, 1–250.
- 37 Murov, S. L., I. Carmichael, G. L. Hug 1993 Handbook of Photochemistry, 2nd ed Marcel Dekker, Inc., New York .