Comparison of Nobiletin and 5-Demethylnobiletin as Cancer Chemopreventive Agents
Marisol Rosas-Martínez
Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología , Universidad Nacional Autónoma de México , Ciudad de México , 04510 , Mexico , unam.mx
Search for more papers by this authorCorresponding Author
Gloria Gutiérrez-Venegas
Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología , Universidad Nacional Autónoma de México , Ciudad de México , 04510 , Mexico , unam.mx
Search for more papers by this authorMarisol Rosas-Martínez
Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología , Universidad Nacional Autónoma de México , Ciudad de México , 04510 , Mexico , unam.mx
Search for more papers by this authorCorresponding Author
Gloria Gutiérrez-Venegas
Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología , Universidad Nacional Autónoma de México , Ciudad de México , 04510 , Mexico , unam.mx
Search for more papers by this authorAbstract
Natural chemicals have been considered as promising molecules in cancer treatment because of their broad spectrum of activities. Flavonoids show high affinity against key molecular targets associated with developing cancer, and tumor cells exhibit an inability to resist flavonoid treatment. Flavonoids are natural molecules synthesized during secondary plant metabolism that has protective activities against biotic and abiotic factors (animals, bacteria, and fungi) and are resistant to ultraviolet light, temperature, and solid minerals and contaminants. They have been purified from plants and synthetic molecules and have an antioxidant, antitumor, and cardioprotective activities in humans. The large flavonoid family includes polymethoxyflavones, which are extracted from the peels of citrus fruits such as Citrus nobilis, from which nobiletin (NOB) is obtained. The compounds derived from this promising anticancer chemical include 5-demethylnobiletin (5-DMN). These compounds inhibit a large number of targets that regulate the hallmarks of cancer by inducing apoptosis, cell cycle arrest, inhibition of proliferation, epithelial–mesenchymal transition, limiting migration, and angiogenesis. 5-DMN has exhibited potency in the regulation of anticancer activities. This review was conducted to summarize and compare the effects of NOB and 5-DMN on different types of cancer.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1 Serafini M., Peluso I., and Raguzzini A., Flavonoids as Anti-inflammatory Agents, Proceedings of the Nutrition Society. (2010) 69, no. 3, 273–278, https://doi.org/10.1017/S002966511000162X, 2-s2.0-77957332166.
- 2 García-Lafuente A., Guillamón E., Villares A., Rostagno M. A., and Martínez J. A., Flavonoids as Anti-inflammatory Agents: Implications in Cancer and Cardiovascular Disease, Inflammation Research. (2009) 58, no. 9, 537–552, https://doi.org/10.1007/s00011-009-0037-3, 2-s2.0-68449103573.
- 3
Lila M. A., Anthocyanins and Human Health: An In Vitro Investigative Approach, BioMed Research International. (2004) 2004, no. 5, 306–313, https://doi.org/10.1155/S111072430440401X, 2-s2.0-15244358126.
10.1155/S111072430440401X Google Scholar
- 4 Ferraz C. R., Carvalho T. T., Manchope M. F. et al., Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-clinical and Clinical Data, and Pharmaceutical Development, Molecules. (2020) 25, no. 3, https://doi.org/10.3390/molecules25030762.
- 5 Ullah A., Munir S., Badshah S. L. et al., Important Flavonoids and Their Role as a Therapeutic Agent, Molecules. (2020) 25, no. 22, https://doi.org/10.3390/molecules25225243.
- 6 Crozier A., Jaganath I. B., and Clifford M. N., Dietary Phenolics: Chemistry, Bioavailability and Effects on Health, Natural Product Reports. (2009) 26, no. 8, 1001–1043, https://doi.org/10.1039/b802662a, 2-s2.0-68149124472.
- 7
Chiou Y. S.,
Zheng Y. N.,
Tsai M. L.,
Lai C. S.,
Ho C. T., and
Pan M. H., 5-Demethylnobiletin More Potently Inhibits Colon Cancer Cell Growth Than Nobiletin In Vitro and In Vivo, Journal of Food Bioactives. (2018) 2, 91–97, https://doi.org/10.31665/JFB.2018.2143.
10.31665/JFB.2018.2143 Google Scholar
- 8 Zheng J., Bi J., Johnson D. et al., Analysis of 10 Metabolites of Polymethoxyflavones with High Sensitivity by Electrochemical Detection in High-Performance Liquid Chromatography, Journal of Agricultural and Food Chemistry. (2015) 63, no. 2, 509–516, https://doi.org/10.1021/jf505545x, 2-s2.0-84921447617.
- 9 Liu L., Xu X., Cheng D., Yao X., and Pan S., Preparative Separation of Polymethoxylated Flavones from Ponkan (Citrus Reticulata Blanco Cv. Ponkan) Peel by High-Speed Countercurrent Chromatography and Their Antifungal Activities against Aspergillus niger, European Food Research and Technology. (2012) 235, no. 4, 631–635, https://doi.org/10.1007/s00217-012-1793-9, 2-s2.0-84866459267.
- 10 Cao H., Chen X., Jassbi A. R., and Xiao J., Microbial Biotransformation of Bioactive Flavonoids, Biotechnology Advances. (2015) 33, no. 1, 214–223, https://doi.org/10.1016/j.biotechadv.2014.10.012, 2-s2.0-84922895084.
- 11
Han J., Chemical Aspects of Gut Metabolism of Flavonoids, Metabolites. (2019) 9, no. 7, https://doi.org/10.3390/metabo9070136, 2-s2.0-85070518409.
10.3390/metabo9070136 Google Scholar
- 12 Koga N., Matsuo M., Ohta C. et al., Comparative Study on Nobiletin Metabolism with Liver Microsomes from Rats, Guinea Pigs and Hamsters and Rat Cytochrome P450, Biological and Pharmaceutical Bulletin. (2007) 30, no. 12, 2317–2323, https://doi.org/10.1248/bpb.30.2317, 2-s2.0-36849013519.
- 13 Li S., Sang S., Pan M. H. et al., Anti-inflammatory Property of the Urinary Metabolites of Nobiletin in Mouse, Bioorganic & Medicinal Chemistry Letters. (2007) 17, no. 18, 5177–5181, https://doi.org/10.1016/j.bmcl.2007.06.096, 2-s2.0-34547866464.
- 14 Li S., Wang Z., Sang S., Huang M. T., and Ho C. T., Identification of Nobiletin Metabolites in Mouse Urine, Molecular Nutrition & Food Research. (2006) 50, no. 3, 291–299, https://doi.org/10.1002/mnfr.200500214, 2-s2.0-33645463556.
- 15 Yasuda T., Yoshimura Y., Yabuki H. et al., Urinary Metabolites of Nobiletin Orally Administered to Rats, Chemical and Pharmaceutical Bulletin. (2003) 51, no. 12, 1426–1428, https://doi.org/10.1248/cpb.51.1426, 2-s2.0-3142717728.
- 16 Wu X., Song M., Wang M. et al., Chemopreventive Effects of Nobiletin and its Colonic Metabolites on Colon Carcinogenesis, Molecular Nutrition & Food Research. (2015) 59, no. 12, 2383–2394, https://doi.org/10.1002/mnfr.201500378, 2-s2.0-84952769409.
- 17 Zhang L., Zhang X., Zhang C. et al., Nobiletin Promotes Antioxidant and Anti-inflammatory Responses and Elicits Protection against Ischemic Stroke In Vivo, Brain Research. (2016) 1636, 130–141, https://doi.org/10.1016/j.brainres.2016.02.013, 2-s2.0-84961575389.
- 18 Tominari T., Hirata M., Matsumoto C., Inada M., and Miyaura C., Polymethoxy Flavonoids, Nobiletin and Tangeretin, Prevent Lipopolysaccharide-Induced Inflammatory Bone Loss in an Experimental Model for Periodontitis, Journal of Pharmacological Sciences. (2012) 119, no. 4, 390–394, https://doi.org/10.1254/jphs.11188sc, 2-s2.0-84865414853.
- 19 Ihara H., Yamamoto H., Ida T. et al., Inhibition of Nitric Oxide Production and Inducible Nitric Oxide Synthase Expression by a Polymethoxyflavone from Young Fruits of Citrus Unshiu in Rat Primary Astrocytes, Bioscience, Biotechnology, and Biochemistry. (2012) 76, no. 10, 1843–1848, https://doi.org/10.1271/bbb.120215, 2-s2.0-84868553912.
- 20 Parkar N. A., Bhatt L. K., and Addepalli V., Efficacy of Nobiletin, a Citrus Flavonoid, in the Treatment of the Cardiovascular Dysfunction of Diabetes in Rats, Food & Function. (2016) 7, 3121–3129, https://doi.org/10.1039/c6fo00294c, 2-s2.0-84978757532.
- 21 Yoshigai E., Machida T., Okuyama T. et al., Citrus Nobiletin Suppresses Inducible Nitric Oxide Synthase Gene Expression in Interleukin-1β-Treated Hepatocytes, Biochemical and Biophysical Research Communications. (2013) 439, no. 1, 54–59, https://doi.org/10.1016/j.bbrc.2013.08.029, 2-s2.0-84883774820.
- 22 Lee J. W., Lee C., Jin Q. et al., Chemical Constituents from Belamcanda Chinensis and Their Inhibitory Effects on Nitric Oxide Production in RAW 264.7 Macrophage Cells, Archives of Pharmacal Research. (2015) 38, no. 6, 991–997, https://doi.org/10.1007/s12272-014-0529-8, 2-s2.0-84930869503.
- 23 Qiu P., Dong P., Guan H. et al., Inhibitory Effects of 5-hydroxy Polymethoxyflavones on Colon Cancer Cells, Molecular Nutrition & Food Research. (2010) 54, no. Suppl 2, 244–252, https://doi.org/10.1002/mnfr.200900605, 2-s2.0-78650889928.
- 24 Akao Y., Itoh T., Ohguchi K., Iinuma M., and Nozawa Y., Interactive Effects of Polymethoxy Flavones from Citrus on Cell Growth Inhibition in Human Neuroblastoma SH-Sy5y Cells, Bioorganic & Medicinal Chemistry. (2008) 16, no. 6, 2803–2810, https://doi.org/10.1016/j.bmc.2008.01.058, 2-s2.0-40949149451.
- 25 Lee Y. C., Cheng T. H., Lee J. S. et al., Nobiletin, a Citrus Flavonoid, Suppresses Invasion and Migration Involving FAK/PI3K/Akt and Small GTPase Signals in Human Gastric Adenocarcinoma AGS Cells, Molecular and Cellular Biochemistry. (2011) 347, no. 1-2, 103–115, https://doi.org/10.1007/s11010-010-0618-z, 2-s2.0-78651303014.
- 26 Iwase Y., Takemura Y., Ju-ichi M. et al., Inhibitory Effect of Flavonoids from Citrus Plants on Epstein-Barr Virus Activation and Two-Stage Carcinogenesis of Skin Tumors, Cancer Letters. (2000) 154, no. 1, 101–105, https://doi.org/10.1016/s0304-3835(00)00386-4, 2-s2.0-17644442018.
- 27 Hanahan D. and Weinberg R. A., Hallmarks of Cancer: the Next Generation, Cell. (2011) 144, no. 5, 646–674, https://doi.org/10.1016/j.cell.2011.02.013, 2-s2.0-79952284127.
- 28 Andrade-Meza A., Arias-Romero L. E., Armas-López L. et al., Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies, International Journal of Molecular Sciences. (2023) 24, no. 3, https://doi.org/10.3390/ijms24032115.
- 29 Kawabata K., Murakami A., and Ohigashi H., Nobiletin, a Citrus Flavonoid, Down-Regulates Matrix Metalloproteinase-7 (Matrilysin) Expression in HT-29 Human Colorectal Cancer Cells, Bioscience, Biotechnology, and Biochemistry. (2005) 69, no. 2, 307–314, https://doi.org/10.1271/bbb.69.307, 2-s2.0-15744366938.
- 30 Miyamoto S., Yasui Y., Tanaka T., Ohigashi H., and Murakami A., Suppressive Effects of Nobiletin on Hyperleptinemia and Colitis-Related Colon Carcinogenesis in Male ICR Mice, Carcinogenesis. (2008) 29, no. 5, 1057–1063, https://doi.org/10.1093/carcin/bgn080, 2-s2.0-47249110701.
- 31
Zhang Z.,
Zhang Z.,
Jiang G.,
Sun H., and
Yu D., Nobiletin Sensitizes Colorectal Cancer Cells to Oxaliplatin by PI3K/Akt/MTOR Pathway, Frontiers in Bioscience. (2019) 24, no. 2, 303–312, https://doi.org/10.2741/4719, 2-s2.0-85057070818.
10.2741/4719 Google Scholar
- 32 Miyamoto S., Yasui Y., Ohigashi H., Tanaka T., and Murakami A., Dietary Flavonoids Suppress Azoxymethane-Induced Colonic Preneoplastic Lesions in Male C57BL/KsJ-Db/db Mice, Chemico-Biological Interactions. (2010) 183, no. 2, 276–283, https://doi.org/10.1016/j.cbi.2009.11.002, 2-s2.0-72149105299.
- 33 Leonardi T., Vanamala J., Taddeo S. S. et al., Apigenin and Naringenin Suppress Colon Carcinogenesis through the Aberrant Crypt Stage in Azoxymethane-Treated Rats, Experimental Biology and Medicine. (2010) 235, no. 6, 710–717, https://doi.org/10.1258/ebm.2010.009359, 2-s2.0-77953192767.
- 34 Zheng Q., Hirose Y., Yoshimi N. et al., Further Investigation of the Modifying Effect of Various Chemopreventive Agents on Apoptosis and Cell Proliferation in Human Colon Cancer Cells, Journal of Cancer Research and Clinical Oncology. (2002) 128, no. 10, 539–546, https://doi.org/10.1007/s00432-002-0373y.
- 35 Wu X., Song M., Qiu P. et al., Synergistic Chemopreventive Effects of Nobiletin and Atorvastatin on Colon Carcinogénesis, Carcinogenesis. (2017) 38, no. 4, 455–464, https://doi.org/10.1093/carcin/bgx018, 2-s2.0-85019635271.
- 36 Wu X., Song M., Gao Z. et al., Nobiletin and its Colonic Metabolites Suppress Colitis-Associated Colon Carcinogenesis by Down-Regulating iNOS, Inducing Antioxidative Enzymes and Arresting Cell Cycle Progression, The Journal of Nutritional Biochemistry. (2017) 42, 17–25, https://doi.org/10.1016/j.jnutbio.2016.12.020, 2-s2.0-85009429485.
- 37 Wu X., Song M., Qiu P. et al., A Metabolite of Nobiletin, 4’-demethylnobiletin and Atorvastatin Synergistically Inhibits Human Colon Cancer Cell Growth by Inducing G0/G1 Cell Cycle Arrest and Apoptosis, Food & Function. (2018) 9, no. 1, 87–95, https://doi.org/10.1039/c7fo01155e, 2-s2.0-85041206609.
- 38
Pereira C. V.,
Duarte M.,
Silva P. et al., Polymethoxylated Flavones Target Cancer Stemness and Improve the Antiproliferative Effect of 5-Fluorouracil in a 3D Cell Model of Colorectal Cancer, Nutrients. (2019) 11, no. 2, https://doi.org/10.3390/nu11020326, 2-s2.0-85061145281.
10.3390/nu11020326 Google Scholar
- 39 Turdo A., Glaviano A., Pepe G. et al., Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy, Cancers. (2021) 13, no. 16, https://doi.org/10.3390/cancers13163927.
- 40 Zhu Y., Yu J., Zhang K. et al., Network Pharmacology Analysis to Explore the Pharmacological Mechanism of Effective Chinese Medicines in Treating Metastatic Colorectal Cancer Using Meta-Analysis Approach, The American Journal of Chinese Medicine. (2021) 49, no. 08, 1839–1870, https://doi.org/10.1142/S0192415X21500877.
- 41 Zheng J., Song M., Dong P. et al., Identification of Novel Bioactive Metabolites of 5-demethylnobiletin in Mice, Molecular Nutrition & Food Research. (2013) 57, no. 11, 1999–2007, https://doi.org/10.1002/mnfr.201300211, 2-s2.0-84886789774.
- 42 Zhang H., Zheng J., Liu A., Xiao H., and He L., Label-free Imaging and Characterization of Cancer Cell Responses to Polymethoxyflavones Using Raman Microscopy, Journal of Agricultural and Food Chemistry. (2016) 64, no. 51, 9708–9713, https://doi.org/10.1021/acs.jafc.6b03899, 2-s2.0-85007523819.
- 43 Goh J. X. H., Tan L. T., Goh J. K. et al., Nobiletin and Derivatives: Functional Compounds from Citrus Fruit Peel for Colon Cancer Chemoprevention, Cancers. (2019) 11, no. 6, https://doi.org/10.3390/cancers11060867, 2-s2.0-85070719969.
- 44 Song M., Lan Y., Wu X. et al., The Chemopreventive Effect of 5-demethylnobiletin, a Unique Citrus Flavonoid, on Colitis-Driven Colorectal Carcinogenesis in Mice Is Associated with its Colonic Metabolites, Food & Function. (2020) 11, no. 6, 4940–4952, https://doi.org/10.1039/d0fo00616e.
- 45 Chou Y. C., Lin Y. H., Lin P. H., Tung Y. C., Ho C. T., and Pan M. H., Dietary 5-demethylnobiletin Modulates Xenobiotic-Metabolizing Enzymes and Ameliorates Colon Carcinogenesis in Benzo[a]pyrene-Induced Mice, Food and Chemical Toxicology. (2021) 155, https://doi.org/10.1016/j.fct.2021.112380.
- 46 Qiu P., Guan H., Dong P. et al., The P53, Bax and P21 Dependent Inhibition of Colon Cancer Cell Growth by 5-hydroxy Polymethoxyflavones, Molecular Nutrition & Food Research. (2011) 55, no. 4, 613–622, https://doi.org/10.1002/mnfr.201000269, 2-s2.0-79953315359.
- 47 Minagawa A., Otani Y., Kubota T. et al., The Citrus Flavonoid, Nobiletin, Inhibits Peritoneal Dissemination of Human Gastric Carcinoma in SCID Mice, Japanese Journal of Cancer Research. (2001) 92, no. 12, 1322–1328, https://doi.org/10.1111/j.1349-7006.2001.tb02156.x, 2-s2.0-0035673312.
- 48 Sekiguchi H., Washida K., and Murakami A., Suppressive Effects of Selected Food Phytochemicals on CD74 Expression in NCI-N87 Gastric Carcinoma Cells, Journal of Clinical Biochemistry & Nutrition. (2008) 43, no. 2, 109–117, https://doi.org/10.3164/jcbn.2008054, 2-s2.0-54949088956.
- 49 Yoshimizu N., Otani Y., Saikawa Y. et al., Anti-tumour Effects of Nobiletin, a Citrus Flavonoid, on Gastric Cancer Include: Antiproliferative Effects, Induction of Apoptosis and Cell Cycle Deregulation, Alimentary Pharmacology & Therapeutics. (2004) 20, no. s1, 95–101, https://doi.org/10.1111/j.1365-2036.2004.02082.x.
- 50 Moon J. Y., Cho M., Ahn K. S., and Cho S. K., Nobiletin Induces Apoptosis and Potentiates the Effects of the Anticancer Drug 5-fluorouracil in P53-Mutated SNU-16 Human Gastric Cancer Cells, Nutrition and Cancer. (2013) 65, no. 2, 286–295, https://doi.org/10.1080/01635581.2013.756529, 2-s2.0-84874622060.
- 51
Moon J. Y. and
Cho S. K., Nobiletin Induces Protective Autophagy Accompanied by ER-Stress Mediated Apoptosis in Human Gastric Cancer SNU-16 Cells, Molecules. (2016) 21, no. 7, https://doi.org/10.3390/molecules21070914, 2-s2.0-84979210581.
10.3390/molecules21070914 Google Scholar
- 52 Xu X., Chen Y., Zhang X. et al., Modular Characteristics and the Mechanism of Chinese Medicine’s Treatment of Gastric Cancer: a Data Mining and Pharmacology-Based Identification, Annals of Translational Medicine. (2021) 9, https://doi.org/10.21037/atm-21-6301.
- 53 Huang J., Wang Y., Xu P. et al., Molecular Mechanism of the Effect of Zhizhu Pill on Gastroesophageal Reflux Disease Based on Network Pharmacology and Molecular Docking, Evidence-based Complementary and Alternative Medicine. (2022) 2022, 1–13, https://doi.org/10.1155/2022/2996865.
- 54
Wang Y.,
Chen Y.,
Zhang H. et al., Polymethoxyflavones from Citrus Inhibited Gastric Cancer Cell Proliferation through Inducing Apoptosis by Upregulating RARβ, Both In Vitro and In Vivo, Food and Chemical Toxicology. (2020) 146, https://doi.org/10.1016/j.fct.2020.111811.
10.1016/j.fct.2020.111811 Google Scholar
- 55 Hsiao P. C., Lee W. J., Yang S. F. et al., Nobiletin Suppresses the Proliferation and Induces Apoptosis Involving MAPKs and Caspase-8/-9/-3 Signals in Human Acute Myeloid Leukemia Cells, Tumor Biology. (2014) 35, no. 12, 11903–11911, https://doi.org/10.1007/s13277-014-2457-0, 2-s2.0-84925286068.
- 56 Ikegawa T., Ushigome F., Koyabu N. et al., Inhibition of P-Glycoprotein by Orange Juice Components, Polymethoxyflavones in Adriamycin-Resistant Human Myelogenous Leukemia (K562/ADM) Cells, Cancer Letters. (2000) 160, no. 1, 21–28, https://doi.org/10.1016/s0304-3835(00)00549-8, 2-s2.0-0034634749.
- 57 Saito T., Abe D., and Nogata Y., Nobiletin and Related Polymethoxylated Flavones Bind to and Inhibit the Nuclear Export Factor Exportin-1 in NK Leukemia Cell Line KHYG-1, Biochemical and Biophysical Research Communications. (2020) 521, no. 2, 457–462, https://doi.org/10.1016/j.bbrc.2019.10.129.
- 58
Yen J. H.,
Lin C. Y.,
Chuang C. H.,
Chin H. K.,
Wu M. J., and
Chen P. Y., Nobiletin Promotes Megakaryocytic Differentiation through the MAPK/ERK-Dependent EGR1Expression and Exerts Anti-leukemic Effects in Human Chronic Myeloid Leukemia (CML) K562 Cells, Cells. (2020) 9, no. 4, https://doi.org/10.3390/cells9040877.
10.3390/cells9040877 Google Scholar
- 59
Chen P. Y.,
Wang C. Y.,
Tsao E. C. et al., 5-Demethylnobiletin Inhibits Cell Proliferation, Downregulates ID1 Expression, Modulates the NF-Κb/tnf-α Pathway and Exerts Antileukemic Effects in AML Cells, International Journal of Molecular Sciences. (2022) 23, no. 13, https://doi.org/10.3390/ijms23137392.
10.3390/ijms23137392 Google Scholar
- 60 Han S. H., Han J. H., Chun W. J., Lee S. S., Kim H. S., and Lee J. W., Nobiletin Inhibits Non-small-cell Lung Cancer by Inactivating WNT/β-Catenin Signaling through Downregulating miR-15-5p, Evidence-based Complementary and Alternative Medicine. (2021) 2021, 1–9, https://doi.org/10.1155/2021/7782963.
- 61 Chen K. H., Weng M. S., and Lin J. K., Tangeretin Suppresses IL-1β-induced Cyclooxygenase (COX)-2 Expression through Inhibition of P38 MAPK, JNK, and AKT Activation in Human Lung Carcinoma Cells, Biochemical Pharmacology. (2007) 73, no. 2, 215–227, https://doi.org/10.1016/j.bcp.2006.09.018, 2-s2.0-33845225077.
- 62 Luo G., Guan X., and Zhou L., Apoptotic Effect of Citrus Fruit Extract Nobiletin on Lung Cancer Cell Line A549 In Vitro and In Vivo, Cancer Biology & Therapy. (2008) 7, no. 6, 966–973, https://doi.org/10.4161/cbt.7.6.5967.
- 63 Sun Y., Han Y., Song M. et al., Inhibitory Effects of Nobiletin and its Major Metabolites on Lung Tumorigenesis, Food & Function. (2019) 10, no. 11, 7444–7452, https://doi.org/10.1039/c9fo01966a.
- 64 Da C., Liu Y., Zhan Y., Liu K., and Wang R., Nobiletin Inhibits Epithelial-Mesenchymal Transition of Human Non-small Cell Lung Cancer Cells by Antagonizing the TGF-β1/Smad3 Signaling Pathway, Oncology Reports. (2016) 35, no. 5, 2767–2774, https://doi.org/10.3892/or.2016.4661, 2-s2.0-84964054338.
- 65 Xiao H., Yang C. S., Li S., Jin H., Ho C. T., and Patel T., Monodemethylated Polymethoxyflavones from Sweet Orange (Citrus Sinensis) Peel Inhibit Growth of Human Lung Cancer Cells by Apoptosis, Molecular Nutrition & Food Research. (2009) 53, no. 3, 398–406, https://doi.org/10.1002/mnfr.200800057, 2-s2.0-62749087811.
- 66
Sp N.,
Kang D. Y.,
Lee J. M., and
Jang K. J., Mechanistic Insights of Anti-immune Evasion by Nobiletin through Regulating miR-197/stat3/pd-L1 Signaling in Non-small Cell Lung Cancer (NSCLC) Cells, International Journal of Molecular Sciences. (2021) 22, no. 18, https://doi.org/10.3390/ijms22189843.
10.3390/ijms22189843 Google Scholar
- 67
Moon J. Y.,
Manh Hung L. V.,
Unno T., and
Cho S. K., Nobiletin Enhances Chemosensitivity to Adriamycin through Modulation of the Akt/GSK3β/β-Catenin/MYCN/MRP1 Signaling Pathway in A549 Human Non-small-cell Lung Cancer Cells, Nutrients. (2018) 10, no. 12, https://doi.org/10.3390/nu10121829, 2-s2.0-85057550104.
10.3390/nu10121829 Google Scholar
- 68 Song M., Charoensinphon N., Wu X. et al., Inhibitory Effects of Metabolites of 5-Demethylnobiletin on Human Nonsmall Cell Lung Cancer Cells, Journal of Agricultural and Food Chemistry. (2016) 64, no. 24, 4943–4949, https://doi.org/10.1021/acs.jafc.6b01367, 2-s2.0-84976320914.
- 69 Gao X. J., Liu J. W., Zhang Q. G., Zhang J. J., Xu H. T., and Liu H. J., Nobiletin Inhibited Hypoxia-Induced Epithelial-Mesenchymal Transition of Lung Cancer Cells by Inactivating of Notch-1 Signaling and Switching on miR-200b, Pharmazie. (2015) 70, no. 4, 256–262.
- 70 Chen Y. K., Wang H. C., Ho C. T. et al., 5-demethylnobiletin Promotes the Formation of Polymerized Tubulin, Leads to G2/M Phase Arrest and Induces Autophagy via JNK Activation in Human Lung Cancer Cells, The Journal of Nutritional Biochemistry. (2015) 26, no. 5, 484–504, https://doi.org/10.1016/j.jnutbio.2014.12.003, 2-s2.0-84928276234.
- 71 Song M., Wu X., Charoensinphon N. et al., Dietary 5-demethylnobiletin Inhibits Cigarette Carcinogen NNK-Induced Lung Tumorigenesis in Mice, Food & Function. (2017) 8, no. 3, 954–963, https://doi.org/10.1039/c6fo01367h, 2-s2.0-85016291894.
- 72 Tan K. T., Li S., Li Y. R., Cheng S. L., Lin S. H., and Tung Y. T., Synergistic Anticancer Effect of a Combination of Paclitaxel and 5-Demethylnobiletin against Lung Cancer Cell Line In Vitro and In Vivo, Applied Biochemistry and Biotechnology. (2019) 187, no. 4, 1328–1343, https://doi.org/10.1007/s12010-018-2869-1, 2-s2.0-85053711548.
- 73
Guo S.,
Zhang Y.,
Wu Z. et al., Synergistic Combination Therapy of Lung Cancer: Cetuximab Functionalized Nanostructured Lipid Carriers for the Co-delivery of Paclitaxel and 5-Demethylnobiletin, Biomedicine & Pharmacotherapy. (2019) 118, https://doi.org/10.1016/j.biopha.2019.109225, 2-s2.0-85068981243.
10.1016/j.biopha.2019.109225 Google Scholar