Molecular Mechanisms of Intervertebral Disc Degeneration Induced by Propionibacterium acnes
Weichao Yang
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorYude Xu
Department of Pain Medicine , Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorYong Tan
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorJinzhi Lin
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorHuan Chen
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorShaojin Li
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorCorresponding Author
Haixiong Miao
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorCorresponding Author
Dongping Ye
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorWeichao Yang
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorYude Xu
Department of Pain Medicine , Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorYong Tan
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorJinzhi Lin
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorHuan Chen
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorShaojin Li
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorCorresponding Author
Haixiong Miao
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorCorresponding Author
Dongping Ye
Guangzhou Red Cross Hospital , Guangzhou Red Cross Hospital of Jinan University , Guangzhou , China , gzrch.com
Search for more papers by this authorAbstract
Intervertebral disc degeneration (IVDD), a prevalent degenerative disorder with substantial socioeconomic impacts, is closely linked to endplate inflammation and chronic low back pain. Its pathogenesis involves multifactorial mechanisms, including long-term chronic mechanical loading, external trauma, and hereditary factors. Emerging evidence highlights Propionibacterium acnes (P. acnes), a gram-positive bacterium with potent proinflammatory properties, as a key contributor to IVDD progression. This review systematically analyses the latest literature on related studies, focusing on the molecular mechanisms of IVDD induced by P. acnes. Three molecules play an important role in the induction of IVDD by P. acnes, namely, IL-1β, MIF, and MMP. In addition, P. acnes induces IVDD through three core mechanisms, namely, proinflammatory (activation of TLR2, production of large amounts of ROS to promote inflammation), pyroptosis (production of large amounts of NLRP3 through the TXNIP-NLRP3 axis and the ROS-NLRP3 axis), and apoptosis (promotion of Bax and inhibition of Bcl-2 expression through the TLR2-JNK pathway). The dissection of these related important molecules and pathogenic mechanisms can lead to a better understanding of the role of P. acnes in IVDD. It can provide an important theoretical basis for future research. However, the current study’s lack of large-scale clinical validation, unresolved colonization controversies, and limited experimental methods are limitations. Therefore, in the future, it is still necessary to improve the relevant theories and resolve the current controversies through more advanced experimental methods and higher quality clinical studies. In conclusion, the study of P. acnes–induced IVDD is promising, and further research can be conducted in the future, which is expected to develop novel therapeutic approaches for P. acnes, thus effectively slowing down the development of IVDD.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.
References
- 1 Roberts S., Disc morphology in health and disease, Biochemical Society Transactions. (2002) 30, no. 6, 864–869, https://doi.org/10.1042/bst0300864, 2-s2.0-0036865325.
- 2 Katz J. N., Lumbar disc disorders and low-back pain: socioeconomic factors and consequences, The Journal of Bone and Joint Surgery. (2006) 88, no. Supplement 2, 21–24, https://doi.org/10.2106/jbjs.E.01273, 2-s2.0-33645556769, 16595438.
- 3 Modic M. T. and Ross J. S., Lumbar degenerative disk disease, Radiology. (2007) 245, no. 1, 43–61, https://doi.org/10.1148/radiol.2451051706, 2-s2.0-34548662684.
- 4 Perry A. and Lambert P., Propionibacterium acnes: infection beyond the skin, Expert Review of Anti-Infective Therapy. (2011) 9, no. 12, 1149–1156, https://doi.org/10.1586/eri.11.137, 2-s2.0-82455186473, 22114965.
- 5 Stirling A., Worthington T., Rafiq M., Lambert P. A., and Elliott T. S., Association between sciatica and Propionibacterium acnes, Lancet. (2001) 357, no. 9273, 2024–2025, https://doi.org/10.1016/S0140-6736(00)05109-6, 2-s2.0-0035938934, 11438138.
- 6 Albert H. B., Lambert P., Rollason J., Sorensen J. S., Worthington T., Pedersen M. B., Nørgaard H. S., Vernallis A., Busch F., Manniche C., and Elliott T., Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae?, European Spine Journal. (2013) 22, no. 4, 690–696, https://doi.org/10.1007/s00586-013-2674-z, 2-s2.0-84892817080, 23397187.
- 7 Zhou Z., Chen Z., Zheng Y., Cao P., Liang Y., Zhang X., Wu W., Xiao J., and Qiu S., Relationship between annular tear and presence of Propionibacterium acnes in lumbar intervertebral disc, European Spine Journal. (2015) 24, no. 11, 2496–2502, https://doi.org/10.1007/s00586-015-4180-y, 2-s2.0-84945495166, 26287263.
- 8 Agarwal V., Golish S. R., and Alamin T. F., Bacteriologic culture of excised intervertebral disc from immunocompetent patients undergoing single level primary lumbar microdiscectomy, Journal of Spinal Disorders & Techniques. (2011) 24, no. 6, 397–400, https://doi.org/10.1097/BSD.0b013e3182019f3a, 2-s2.0-80051791814, 21150662.
- 9 Yuan Y., Zhou Z., Jiao Y., Li C., Zheng Y., Lin Y., Xiao J., Chen Z., and Cao P., Histological identification of Propionibacterium acnes in nonpyogenic degenerated intervertebral discs, BioMed Research International. (2017) 2017, no. 1, 6192935, https://doi.org/10.1155/2017/6192935, 2-s2.0-85017191926, 28401158.
- 10 Zamora T., Palma J., Andia M., Garcia P., Wozniak A., Solar A., and Campos M., Effect of Propionibacterium acnes (PA) injection on intervertebral disc degeneration in a rat model: does it mimic Modic changes?, Orthopaedics & Traumatology, Surgery & Research. (2017) 103, no. 5, 795–799, https://doi.org/10.1016/j.otsr.2017.04.005, 2-s2.0-85025463928, 28552835.
- 11 Chen Z., Zheng Y., Yuan Y., Jiao Y., Xiao J., Zhou Z., and Cao P., Modic changes and disc degeneration caused by inoculation of Propionibacterium acnes inside intervertebral discs of rabbits: a pilot study, BioMed Research International. (2016) 2016, no. 1, 9612437, https://doi.org/10.1155/2016/9612437, 2-s2.0-84958093457, 26925420.
- 12 Shan Z., Zhang X., Li S., Yu T., Liu J., and Zhao F., Propionibacterium acnes incubation in the discs can result in time-dependent Modic changes: a long-term rabbit model, Spine. (2017) 42, no. 21, 1595–1603, https://doi.org/10.1097/brs.0000000000002192, 2-s2.0-85017413332, 28399545.
- 13 Dréno B., Pécastaings S., Corvec S., Veraldi S., Khammari A., and Roques C., Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates, Journal of the European Academy of Dermatology and Venereology. (2018) 32, no. Supplement 2, 5–14, https://doi.org/10.1111/jdv.15043, 2-s2.0-85048631863.
- 14 Csukás Z., Banizs B., and Rozgonyi F., Studies on the cytotoxic effects of Propionibacterium acnes strains isolated from cornea, Microbial Pathogenesis. (2004) 36, no. 3, 171–174, https://doi.org/10.1016/j.micpath.2003.09.002, 2-s2.0-0346690100, 14726235.
- 15 Cove J. H., Holland K. T., and Cunliffe W. J., Effects of oxygen concentration on biomass production, maximum specific growth rate and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture, Journal of General Microbiology. (1983) 129, no. 11, 3327–3334, https://doi.org/10.1099/00221287-129-11-3327, 6663280.
- 16 Webster G. F., Leyden J. J., Musson R. A., and Douglas S. D., Susceptibility of Propionibacterium acnes to killing and degradation by human neutrophils and monocytes in vitro, Infection and Immunity. (1985) 49, no. 1, 116–121, https://doi.org/10.1128/iai.49.1.116-121.1985, 2989178.
- 17 Johnson J. L. and Cummins C. S., Cell wall composition and deoxyribonucleic acid similarities among the anaerobic coryneforms, classical propionibacteria, and strains of Arachnia propionica, Journal of Bacteriology. (1972) 109, no. 3, 1047–1066, https://doi.org/10.1128/jb.109.3.1047-1066.1972, 5062339.
- 18 McDowell A., Perry A. L., Lambert P. A., and Patrick S., A new phylogenetic group of Propionibacterium acnes, Journal of Medical Microbiology. (2008) 57, no. 2, 218–224, https://doi.org/10.1099/jmm.0.47489-0, 2-s2.0-38949217396.
- 19 Hoeffler U., Enzymatic and hemolytic properties of Propionibacterium acnes and related bacteria, Journal of Clinical Microbiology. (1977) 6, no. 6, 555–558, https://doi.org/10.1128/jcm.6.6.555-558.1977, 201661.
- 20 Allaker R. P., Greenman J., and Osborne R. H., The production of inflammatory compounds by Propionibacterium acnes and other skin organisms, The British Journal of Dermatology. (1987) 117, no. 2, 175–183, https://doi.org/10.1111/j.1365-2133.1987.tb04114.x, 2-s2.0-0023251965, 2958076.
- 21 Webster G. F., Leyden J. J., Norman M. E., and Nilsson U. R., Complement activation in acne vulgaris: in vitro studies with Propionibacterium acnes and Propionibacterium granulosum, Infection and Immunity. (1978) 22, no. 2, 523–529, https://doi.org/10.1128/iai.22.2.523-529.1978, 153333.
- 22 Ishimura M. E., Teixeira D., Silveira G. D. P., Gambero M., Gama G. A. C., Pimenta B. S. O., Rodrigues E. G., and Longo-Maugéri I. M., Killed Propionibacterium acnes enhances immunogenicity and tumor growth control of a dendritic-tumor cell hybrid vaccine in a murine melanoma model, PLoS One. (2018) 13, no. 10, e0205148, https://doi.org/10.1371/journal.pone.0205148, 2-s2.0-85054773532, 30300366.
- 23 Senker W., Aspalter S., Radl C., Pichler J., Doppler S., Weis S., Webersinke C., Wagner H., Hermann P., Aichholzer M., Aufschnaiter-Hießböck K., Thomae W., Stroh N., Hauser T., and Gruber A., Frequency and characteristics of bacterial and viral low-grade infections of the intervertebral discs: a prospective, observational study, Journal of Orthopaedics and Traumatology. (2022) 23, no. 1, https://doi.org/10.1186/s10195-022-00633-y, 35303173.
- 24 Georgy M. M., Vaida F., Stern M., and Murphy K., Association between type 1 Modic changes and Propionibacterium acnes infection in the cervical spine: an observational study, AJNR. American Journal of Neuroradiology. (2018) 39, no. 9, 1764–1767, https://doi.org/10.3174/ajnr.A5741, 2-s2.0-85053057070, 30139754.
- 25 Ganko R., Rao P. J., Phan K., and Mobbs R. J., Can bacterial infection by low virulent organisms be a plausible cause for symptomatic disc degeneration? A systematic review, Spine. (2015) 40, no. 10, E587–E592, https://doi.org/10.1097/brs.0000000000000832, 2-s2.0-84942610689, 25955094.
- 26 Albert H. B., Manniche C., Sorensen J. S., and Deleuran B. W., Antibiotic treatment in patients with low-back pain associated with Modic changes type 1 (bone oedema): a pilot study, British Journal of Sports Medicine. (2008) 42, no. 12, 969–973, https://doi.org/10.1136/bjsm.2008.050369, 2-s2.0-58049208092, 18718972.
- 27 Albert H. B., Sorensen J. S., Christensen B. S., and Manniche C., Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy, European Spine Journal. (2013) 22, no. 4, 697–707, https://doi.org/10.1007/s00586-013-2675-y, 2-s2.0-84885882488, 23404353.
- 28 Grados F., Lescure F. X., Senneville E., Flipo R. M., Schmit J. L., and Fardellone P., Suggestions for managing pyogenic (non-tuberculous) discitis in adults, Joint, Bone, Spine. (2007) 74, no. 2, 133–139, https://doi.org/10.1016/j.jbspin.2006.11.002, 2-s2.0-34247110546, 17337352.
- 29 Furustrand Tafin U., Corvec S., Betrisey B., Zimmerli W., and Trampuz A., Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model, Antimicrobial Agents and Chemotherapy. (2012) 56, no. 4, 1885–1891, https://doi.org/10.1128/AAC.05552-11, 2-s2.0-84858638953, 22252806.
- 30 Pola E., Logroscino C. A., Gentiempo M., Colangelo D., Mazzotta V., Di Meco E., and Fantoni M., Medical and surgical treatment of pyogenic spondylodiscitis, European Review for Medical and Pharmacological Sciences. (2012) 16, no. Supplement 2, 35–49, 22655482.
- 31 McLorinan G. C., Glenn J. V., McMullan M. G., and Patrick S., Propionibacterium acnes wound contamination at the time of spinal surgery, Clinical Orthopaedics and Related Research. (2005) 437, no. 437, 67–73, https://doi.org/10.1097/00003086-200508000-00012, 2-s2.0-23244440371, 16056028.
- 32 Carricajo A., Nuti C., Aubert E., Hatem O., Fonsale N., Mallaval F. O., Vautrin A. C., Brunon J., and Aubert G., Propionibacterium acnes contamination in lumbar disc surgery, The Journal of Hospital Infection. (2007) 66, no. 3, 275–277, https://doi.org/10.1016/j.jhin.2007.04.007, 2-s2.0-34250900351, 17573158.
- 33 Ben-Galim P., Rand N., Giladi M., Schwartz D., Ashkenazi E., Millgram M., Dekel S., and Floman Y., Association between sciatica and microbial infection: true infection or culture contamination?, Spine. (2006) 31, no. 21, 2507–2509, https://doi.org/10.1097/01.brs.0000238657.13263.b2, 2-s2.0-33749528812.
- 34 Savage J. W., Weatherford B. M., Sugrue P. A., Nolden M. T., Liu J. C., Song J. K., and Haak M. H., Efficacy of surgical preparation solutions in lumbar spine surgery, The Journal of Bone and Joint Surgery. (2012) 94, no. 6, 490–494, https://doi.org/10.2106/jbjs.K.00471, 2-s2.0-84860622834, 22437997.
- 35 Lee M. J., Pottinger P. S., Butler-Wu S., Bumgarner R. E., Russ S. M., and MatsenF. A.3rd, Propionibacterium persists in the skin despite standard surgical preparation, The Journal of Bone and Joint Surgery. (2014) 96, no. 17, 1447–1450, https://doi.org/10.2106/jbjs.M.01474, 2-s2.0-84907189169, 25187583.
- 36 Capoor M. N., Ruzicka F., Schmitz J. E., James G. A., Machackova T., Jancalek R., Smrcka M., Lipina R., Ahmed F. S., Alamin T. F., Anand N., Baird J. C., Bhatia N., Demir-Deviren S., Eastlack R. K., Fisher S., Garfin S. R., Gogia J. S., Gokaslan Z. L., Kuo C. C., Lee Y. P., Mavrommatis K., Michu E., Noskova H., Raz A., Sana J., Shamie A. N., Stewart P. S., Stonemetz J. L., Wang J. C., Witham T. F., Coscia M. F., Birkenmaier C., Fischetti V. A., and Slaby O., Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy, PLoS One. (2017) 12, no. 4, e0174518, https://doi.org/10.1371/journal.pone.0174518, 2-s2.0-85016602260, 28369127.
- 37 Risbud M. V. and Shapiro I. M., Role of cytokines in intervertebral disc degeneration: pain and disc content, Nature Reviews Rheumatology. (2014) 10, no. 1, 44–56, https://doi.org/10.1038/nrrheum.2013.160, 2-s2.0-84891163628, 24166242.
- 38 Chen Z. H., Jin S. H., Wang M. Y., Jin X. L., Lv C., Deng Y. F., and Wang J. L., Enhanced NLRP3, caspase-1, and IL-1β levels in degenerate human intervertebral disc and their association with the grades of disc degeneration, The Anatomical Record. (2015) 298, no. 4, 720–726, https://doi.org/10.1002/ar.23059, 2-s2.0-84925357274, 25284686.
- 39 Studer R. K., Vo N., Sowa G., Ondeck C., and Kang J., Human nucleus pulposus cells react to IL-6: independent actions and amplification of response to IL-1 and TNF-α, Spine. (2011) 36, no. 8, 593–599, https://doi.org/10.1097/BRS.0b013e3181da38d5, 2-s2.0-79955060109, 21178846.
- 40 Le Maitre C. L., Hoyland J. A., and Freemont A. J., Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study, Arthritis Research & Therapy. (2007) 9, no. 4, https://doi.org/10.1186/ar2282, 2-s2.0-34848893110, 17760968.
- 41 Purmessur D., Freemont A. J., and Hoyland J. A., Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc, Arthritis Research & Therapy. (2008) 10, no. 4, https://doi.org/10.1186/ar2487, 2-s2.0-51749115510, 18727839.
- 42 Moradi Tuchayi S., Makrantonaki E., Ganceviciene R., Dessinioti C., Feldman S. R., and Zouboulis C. C., Acne vulgaris, Nature Reviews. Disease Primers. (2015) 1, no. 1, 15029, https://doi.org/10.1038/nrdp.2015.29, 2-s2.0-85012182543.
- 43 Kistowska M., Gehrke S., Jankovic D., Kerl K., Fettelschoss A., Feldmeyer L., Fenini G., Kolios A., Navarini A., Ganceviciene R., Schauber J., Contassot E., and French L. E., IL-1β drives inflammatory responses to Propionibacterium acnes in vitro and in vivo, The Journal of Investigative Dermatology. (2014) 134, no. 3, 677–685, https://doi.org/10.1038/jid.2013.438, 2-s2.0-84894041097, 24157462.
- 44 Capoor M. N., Konieczna A., McDowell A., Ruzicka F., Smrcka M., Jancalek R., Maca K., Lujc M., Ahmed F. S., Birkenmaier C., Dudli S., and Slaby O., Pro-inflammatory and neurotrophic factor responses of cells derived from degenerative human intervertebral discs to the opportunistic pathogen Cutibacterium acnes, International Journal of Molecular Sciences. (2021) 22, no. 5, https://doi.org/10.3390/ijms22052347, 33652921.
- 45 Hertelendy J., Reumuth G., Simons D., Stoppe C., Kim B. S., Stromps J. P., Fuchs P. C., Bernhagen J., Pallua N., and Grieb G., Macrophage migration inhibitory factor - a favorable marker in inflammatory diseases?, Current Medicinal Chemistry. (2018) 25, no. 5, 601–605, https://doi.org/10.2174/0929867324666170714114200, 2-s2.0-85043330850, 28714387.
- 46 Baugh J. A. and Bucala R., Macrophage migration inhibitory factor, Critical Care Medicine. (2002) 30, no. Supplement, S27–s35, https://doi.org/10.1097/00003246-200201001-00004.
- 47 Xiong C., Huang B., Cun Y., Aghdasi B. G., and Zhou Y., Migration inhibitory factor enhances inflammation via CD74 in cartilage end plates with Modic type 1 changes on MRI, Clinical Orthopaedics and Related Research. (2014) 472, no. 6, 1943–1954, https://doi.org/10.1007/s11999-014-3508-y, 2-s2.0-84901273745, 24569872.
- 48 Zhang Y., Wang Y., Yuan Y., Lin Y., Lin B., and Zhou H., Propionibacterium acnes induces cartilaginous endplate degeneration by promoting MIF expression via the NF-κB pathway, Journal of Orthopaedic Surgery and Research. (2020) 15, no. 1, https://doi.org/10.1186/s13018-020-01714-6, 32517767.
- 49 de Almeida L. G. N., Thode H., Eslambolchi Y., Chopra S., Young D., Gill S., Devel L., and Dufour A., Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology, Pharmacological Reviews. (2022) 74, no. 3, 712–768, https://doi.org/10.1124/pharmrev.121.000349, 35738680.
- 50 Song Q., Zhang F., Wang K., Chen Z., Li Q., Liu Z., and Shen H., MiR-874-3p plays a protective role in intervertebral disc degeneration by suppressing MMP2 and MMP3, European Journal of Pharmacology. (2021) 895, 173891, https://doi.org/10.1016/j.ejphar.2021.173891, 33482178.
- 51 Zou X., Zhang X., Han S., Wei L., Zheng Z., Wang Y., Xin J., and Zhang S., Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: a comprehensive review, Biochimie. (2023) 214, no. Part B, 27–48, https://doi.org/10.1016/j.biochi.2023.05.015, 37268183.
- 52 Choi J. Y., Piao M. S., Lee J. B., Oh J. S., Kim I. G., and Lee S. C., Propionibacterium acnes stimulates pro-matrix metalloproteinase-2 expression through tumor necrosis factor-alpha in human dermal fibroblasts, The Journal of Investigative Dermatology. (2008) 128, no. 4, 846–854, https://doi.org/10.1038/sj.jid.5701188, 2-s2.0-40649083598, 18049448.
- 53 Jugeau S., Tenaud I., Knol A. C., Jarrousse V., Quereux G., Khammari A., and Dreno B., Induction of toll-like receptors by Propionibacterium acnes, The British Journal of Dermatology. (2005) 153, no. 6, 1105–1113, https://doi.org/10.1111/j.1365-2133.2005.06933.x, 2-s2.0-28844450332, 16307644.
- 54 Lan W., Wang X., Tu X., Hu X., and Lu H., Different phylotypes of Cutibacterium acnes cause different Modic changes in intervertebral disc degeneration, PLoS One. (2022) 17, no. 7, e0270982, https://doi.org/10.1371/journal.pone.0270982, 35819943.
- 55 Zheng Y., Lin Y., Chen Z., Jiao Y., Yuan Y., Li C., Xu X., and Cao P., Propionibacterium acnes induces intervertebral discs degeneration by increasing MMP-1 and inhibiting TIMP-1 expression via the NF-κB pathway, International Journal of Clinical and Experimental Pathology. (2018) 11, no. 7, 3445–3453, 31949722.
- 56 Kirschning C. J. and Bauer S., Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses, International Journal of Medical Microbiology. (2001) 291, no. 4, 251–260, https://doi.org/10.1078/1438-4221-00128, 2-s2.0-0034787252, 11680785.
- 57 Aliprantis A. O., Yang R. B., Mark M. R., Suggett S., Devaux B., Radolf J. D., Klimpel G. R., Godowski P., and Zychlinsky A., Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2, Science. (1999) 285, no. 5428, 736–739, https://doi.org/10.1126/science.285.5428.736, 2-s2.0-0033618630.
- 58 Su Q., Grabowski M., and Weindl G., Recognition of Propionibacterium acnes by human TLR2 heterodimers, International Journal of Medical Microbiology. (2017) 307, no. 2, 108–112, https://doi.org/10.1016/j.ijmm.2016.12.002, 2-s2.0-85009413776, 28024924.
- 59 Jiao Y., Yuan Y., Lin Y., Zhou Z., Zheng Y., Wu W., Tang G., Chen Y., Xiao J., Li C., Chen Z., and Cao P., Propionibacterium acnes induces discogenic low back pain via stimulating nucleus pulposus cells to secrete pro-algesic factor of IL-8/CINC-1 through TLR2-NF-κB p65 pathway, Journal of Molecular Medicine (Berlin, Germany). (2019) 97, no. 1, 25–35, https://doi.org/10.1007/s00109-018-1712-z, 2-s2.0-85056334097, 30397790.
- 60 Benhar M., Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress, Free Radical Biology & Medicine. (2018) 127, 160–164, https://doi.org/10.1016/j.freeradbiomed.2018.01.028, 2-s2.0-85041634183, 29378334.
- 61 Herb M. and Schramm M., Functions of ROS in macrophages and antimicrobial immunity, Antioxidants. (2021) 10, no. 2, https://doi.org/10.3390/antiox10020313, 33669824.
- 62 Tsai H. H., Lee W. R., Wang P. H., Cheng K. T., Chen Y. C., and Shen S. C., Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages, Journal of Dermatological Science. (2013) 69, no. 2, 122–131, https://doi.org/10.1016/j.jdermsci.2012.10.009, 2-s2.0-84873567817, 23178030.
- 63 Kohyama K., Saura R., Doita M., and Mizuno K., Intervertebral disc cell apoptosis by nitric oxide: biological understanding of intervertebral disc degeneration, The Kobe Journal of Medical Sciences. (2000) 46, no. 6, 283–295, 11501016.
- 64 Vo N. V., Sowa G. A., Kang J. D., Seidel C., and Studer R. K., Prostaglandin E2 and prostaglandin F2α differentially modulate matrix metabolism of human nucleus pulposus cells, Journal of Orthopaedic Research. (2010) 28, no. 10, 1259–1266, https://doi.org/10.1002/jor.21157, 2-s2.0-77957191083, 20839316.
- 65 Lin Y., Tang G., Jiao Y., Yuan Y., Zheng Y., Chen Y., Xiao J., Li C., Chen Z., and Cao P., Propionibacterium acnes induces intervertebral disc degeneration by promoting iNOS/NO and COX-2/PGE(2) activation via the ROS-dependent NF-κB pathway, Oxidative Medicine and Cellular Longevity. (2018) 2018, no. 1, 3692752, https://doi.org/10.1155/2018/3692752, 2-s2.0-85059170433, 30210652.
- 66 Burke J. G., Watson R. W., McCormack D., Dowling F. E., Walsh M. G., and Fitzpatrick J. M., Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators, Journal of Bone and Joint Surgery. British Volume (London). (2002) 84, no. 2, 196–201, https://doi.org/10.1302/0301-620x.84b2.12511, 2-s2.0-0036201899, 11924650.
- 67 He Y. and Amer A. O., Microbial modulation of host apoptosis and pyroptosis, Frontiers in Cellular and Infection Microbiology. (2014) 4, https://doi.org/10.3389/fcimb.2014.00083, 2-s2.0-84907167783, 24995165.
- 68 Balasubramanian A., Hsu A. Y., Ghimire L., Tahir M., Devant P., Fontana P., Du G., Liu X., Fabin D., Kambara H., Xie X., Liu F., Hasegawa T., Xu R., Yu H., Chen M., Kolakowski S., Trauger S., Larsen M. R., Wei W., Wu H., Kagan J. C., Lieberman J., and Luo H. R., The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis, Science Immunology. (2024) 9, no. 94, eadn1452, https://doi.org/10.1126/sciimmunol.adn1452, 38530158.
- 69 Burdette B. E., Esparza A. N., Zhu H., and Wang S., Gasdermin D in pyroptosis, Acta Pharmaceutica Sinica B. (2021) 11, no. 9, 2768–2782, https://doi.org/10.1016/j.apsb.2021.02.006, 34589396.
- 70 Zhang J., Zhang J., Zhang Y., Liu W., Ni W., Huang X., Yuan J., Zhao B., Xiao H., and Xue F., Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis, Journal of Cellular and Molecular Medicine. (2020) 24, no. 20, 11742–11754, https://doi.org/10.1111/jcmm.15784, 32860495.
- 71 Zhou H., Qian Q., Chen Q., Chen T., Wu C., Chen L., Zhang Z., Wu O., Jin Y., Wang X., Guo Z., Sun J., Zhang J., Shen S., Wang X., Jones M., Khan M. A., Makvandi P., Zhou Y., and Wu A., Enhanced mitochondrial targeting and inhibition of pyroptosis with multifunctional metallopolyphenol nanoparticles in intervertebral disc degeneration, Small. (2024) 20, no. 13, e2308167, https://doi.org/10.1002/smll.202308167, 37953455.
- 72 Liao Z., Li S., Liu R., Feng X., Shi Y., Wang K., Li S., Zhang Y., Wu X., and Yang C., Autophagic degradation of gasdermin D protects against nucleus pulposus cell pyroptosis and retards intervertebral disc degeneration in vivo, Oxidative Medicine and Cellular Longevity. (2021) 2021, no. 1, 5584447, https://doi.org/10.1155/2021/5584447, 34239691.
- 73 Kovacs S. B. and Miao E. A., Gasdermins: effectors of pyroptosis, Trends in Cell Biology. (2017) 27, no. 9, 673–684, https://doi.org/10.1016/j.tcb.2017.05.005, 2-s2.0-85020444529, 28619472.
- 74 Tang P., Gu J. M., Xie Z. A., Gu Y., Jie Z. W., Huang K. M., Wang J. Y., Fan S. W., Jiang X. S., and Hu Z. J., Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 inflammasome signal pathway, Free Radical Biology & Medicine. (2018) 120, 368–379, https://doi.org/10.1016/j.freeradbiomed.2018.04.008, 2-s2.0-85045555363, 29649568.
- 75 Wang D., Cai X., Xu F., Kang H., Li Y., and Feng R., Ganoderic acid A alleviates the degeneration of intervertebral disc via suppressing the activation of TLR4/NLRP3 signaling pathway, Bioengineered. (2022) 13, no. 5, 11684–11693, https://doi.org/10.1080/21655979.2022.2070996, 35506157.
- 76 Byon C. H., Han T., Wu J., and Hui S. T., TXNIP ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice, Atherosclerosis. (2015) 241, no. 2, 313–321, https://doi.org/10.1016/j.atherosclerosis.2015.05.020, 2-s2.0-84936164853, 26062991.
- 77 He D., Zhou M., Bai Z., Wen Y., Shen J., and Hu Z., Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell pyroptosis via NLRP3-dependent pathway, Biochemical and Biophysical Research Communications. (2020) 526, no. 3, 772–779, https://doi.org/10.1016/j.bbrc.2020.03.161, 32265028.
- 78 Zheng D., Liu J., Piao H., Zhu Z., Wei R., and Liu K., ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis, Frontiers in Immunology. (2022) 13, 1039241, https://doi.org/10.3389/fimmu.2022.1039241, 36389728.
- 79 Ma Z., Tang P., Dong W., Lu Y., Tan B., Zhou N., Hao J., Shen J., and Hu Z., SIRT1 alleviates IL-1β induced nucleus pulposus cells pyroptosis via mitophagy in intervertebral disc degeneration, International Immunopharmacology. (2022) 107, 108671, https://doi.org/10.1016/j.intimp.2022.108671, 35305383.
- 80 Zhao K., An R., Xiang Q., Li G., Wang K., Song Y., Liao Z., Li S., Hua W., Feng X., Wu X., Zhang Y., Das A., and Yang C., Acid-sensing ion channels regulate nucleus pulposus cell inflammation and pyroptosis via the NLRP3 inflammasome in intervertebral disc degeneration, Cell Proliferation. (2021) 54, no. 1, e12941, https://doi.org/10.1111/cpr.12941, 33111436.
- 81 Tang G., Han X., Lin Z., Qian H., Chen B., Zhou C., Chen Y., and Jiang W., Propionibacterium acnes accelerates intervertebral disc degeneration by inducing pyroptosis of nucleus pulposus cells via the ROS-NLRP3 pathway, Oxidative Medicine and Cellular Longevity. (2021) 2021, no. 1, 4657014, https://doi.org/10.1155/2021/4657014, 33603947.
- 82 Wang J., Tang T., Yang H., Yao X., Chen L., Liu W., and Li T., The expression of Fas ligand on normal and stabbed-disc cells in a rabbit model of intervertebral disc degeneration: a possible pathogenesis, Journal of Neurosurgery. Spine. (2007) 6, no. 5, 425–430, https://doi.org/10.3171/spi.2007.6.5.425, 2-s2.0-34347226383, 17542508.
- 83 Park J. B., Lee J. K., Park S. J., Kim K. W., and Riew K. D., Mitochondrial involvement in Fas-mediated apoptosis of human lumbar disc cells, The Journal of Bone and Joint Surgery. American Volume. (2005) 87, no. 6, 1338–1342, https://doi.org/10.2106/jbjs.D.02527, 2-s2.0-19944400803, 15930545.
- 84 Chittenden T., Flemington C., Houghton A. B., Ebb R. G., Gallo G. J., Elangovan B., Chinnadurai G., and Lutz R. J., A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions, The EMBO Journal. (1995) 14, no. 22, 5589–5596, https://doi.org/10.1002/j.1460-2075.1995.tb00246.x, 8521816.
- 85 Tan K. O., Tan K. M., Chan S. L., Yee K. S., Bevort M., Ang K. C., and Yu V. C., MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains, The Journal of Biological Chemistry. (2001) 276, no. 4, 2802–2807, https://doi.org/10.1074/jbc.M008955200, 2-s2.0-0035951847, 11060313.
- 86 Schmitt E., Paquet C., Beauchemin M., Dever-Bertrand J., and Bertrand R., Characterization of Bax-sigma, a cell death-inducing isoform of Bax, Biochemical and Biophysical Research Communications. (2000) 270, no. 3, 868–879, https://doi.org/10.1006/bbrc.2000.2537, 2-s2.0-0034696814, 10772918.
- 87 Tan K. O., Fu N. Y., Sukumaran S. K., Chan S. L., Kang J. H., Poon K. L., Chen B. S., and Yu V. C., MAP-1 is a mitochondrial effector of Bax, Proceedings of the National Academy of Sciences of the United States of America. (2005) 102, no. 41, 14623–14628, https://doi.org/10.1073/pnas.0503524102, 2-s2.0-26844504903, 16199525.
- 88 Eguchi Y., Ewert D. L., and Tsujimoto Y., Isolation and characterization of the chicken bcl-2 gene: expression in a variety of tissues including lymphoid and neuronal organs in adult and embryo, Nucleic Acids Research. (1992) 20, no. 16, 4187–4192, https://doi.org/10.1093/nar/20.16.4187, 2-s2.0-0026640706, 1508712.
- 89 Lin Y., Jiao Y., Yuan Y., Zhou Z., Zheng Y., Xiao J., Li C., Chen Z., and Cao P., Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway, Emerging Microbes & Infections. (2018) 7, no. 1, https://doi.org/10.1038/s41426-017-0002-0, 2-s2.0-85040467555, 29323102.
- 90 Liu X., Zhuang J., Wang D., Lv L., Zhu F., Yao A., and Xu T., Glycyrrhizin suppresses inflammation and cell apoptosis by inhibition of HMGB1 via p38/p-JUK signaling pathway in attenuating intervertebral disc degeneration, American Journal of Translational Research. (2019) 11, no. 8, 5105–5113, 31497226.
- 91 Yang F., Duan Y., Li Y., Zhu D., Wang Z., Luo Z., Zhang Y., Zhang G., He X., and Kang X., S100A6 regulates nucleus pulposus cell apoptosis via Wnt/β-catenin signaling pathway: an in vitro and in vivo study, Molecular Medicine. (2024) 30, no. 1, https://doi.org/10.1186/s10020-024-00853-4, 38877413.
- 92 Li M., Yu X., Chen X., Jiang Y., Zeng Y., Ren R., Nie M., Zhang Z., Bao Y., and Kang H., Genkwanin alleviates intervertebral disc degeneration via regulating ITGA2/PI3K/AKT pathway and inhibiting apoptosis and senescence, International Immunopharmacology. (2024) 133, 112101, https://doi.org/10.1016/j.intimp.2024.112101, 38640717.
- 93 Yurube T., Buchser W. J., Zhang Z., Silwal P., Lotze M. T., Kang J. D., Sowa G. A., and Vo N. V., Rapamycin mitigates inflammation-mediated disc matrix homeostatic imbalance by inhibiting mTORC1 and inducing autophagy through Akt activation, JOR Spine. (2024) 7, no. 1, e1303, https://doi.org/10.1002/jsp2.1303, 38222800.