PD-L2 Expression in Breast Cancer Promotes Tumor Development and Progression
Yuling Sun
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorJie Yang
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorYachun Chen
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorYundi Guo
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorJian Xiong
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorXuqin Guo
Center for Drug Metabolism and Pharmacokinetics , College of Pharmaceutical Sciences , Soochow University , Suzhou , 215123 , China , scu.edu.tw
Search for more papers by this authorYawen Zhang
Center for Drug Metabolism and Pharmacokinetics , College of Pharmaceutical Sciences , Soochow University , Suzhou , 215123 , China , scu.edu.tw
Search for more papers by this authorLi Gu
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorMin Tong
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorCorresponding Author
Weipeng Wang
Center for Drug Metabolism and Pharmacokinetics , College of Pharmaceutical Sciences , Soochow University , Suzhou , 215123 , China , scu.edu.tw
Search for more papers by this authorCorresponding Author
Jing Sun
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorYuling Sun
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorJie Yang
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorYachun Chen
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorYundi Guo
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorJian Xiong
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorXuqin Guo
Center for Drug Metabolism and Pharmacokinetics , College of Pharmaceutical Sciences , Soochow University , Suzhou , 215123 , China , scu.edu.tw
Search for more papers by this authorYawen Zhang
Center for Drug Metabolism and Pharmacokinetics , College of Pharmaceutical Sciences , Soochow University , Suzhou , 215123 , China , scu.edu.tw
Search for more papers by this authorLi Gu
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorMin Tong
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorCorresponding Author
Weipeng Wang
Center for Drug Metabolism and Pharmacokinetics , College of Pharmaceutical Sciences , Soochow University , Suzhou , 215123 , China , scu.edu.tw
Search for more papers by this authorCorresponding Author
Jing Sun
Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology , Suzhou Vocational Health College , Suzhou , 215009 , China
Search for more papers by this authorAbstract
Background. This work focused on investigating the role of programmed death ligand 2 (PD-L2) in the progression of breast cancer by utilizing breast cancer specimens and cells. Materials and Methods. The serum levels of soluble PD-L2 (sPD-L2) in breast cancer patients and healthy individuals were analyzed by means of the enzyme-linked immunosorbent assay, and the PD-L2 levels within 416 resected breast cancer specimens were assessed through immunohistochemistry. Concurrently, in vitro cell experiments and in vivo animal experiments were carried out to analyze the relationship between PD-L2 and the invasion and migration of breast cancer. Results. The concentration of sPD-L2 in breast cancer patients significantly increased compared to that in the control groups. Additionally, breast cancer patients with high concentrations of sPD-L2 had higher Ki67 values (≥30%) and tumor grades. PD-L2 was expressed in 79.09% of the cancer samples, which exhibited a positive correlation with the progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Furthermore, we discovered that knockdown of PD-L2 inhibited the migratory and invasive abilities of both MCF-7 and MDA-MB231 cells. Conclusion. Our findings demonstrated that knockdown of PD-L2 suppressed tumor growth, providing novel insights into important biological functions.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Open Research
Data Availability
Data that support our results can be obtained from corresponding authors on request.
References
- 1 Tseng S., Otsuji M., Gorski K., Huang X., Slansky J., Pai S., Shalabi A., Shin T., Pardoll D., and Tsuchiya H., B7-Dc, a new dendritic cell molecule with potent costimulatory properties for T cells, The Journal of Experimental Medicine. (2001) 193, no. 7, 839–846, https://doi.org/10.1084/jem.193.7.839, 2-s2.0-0035794314.
- 2 Greaves P. and Gribben J. G., The role of B7 family molecules in hematologic malignancy, Blood. (2013) 121, no. 5, 734–744, https://doi.org/10.1182/blood-2012-10-385591, 2-s2.0-84873534154.
- 3 Dong H., Zhu G., Tamada K., and Chen L., B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion, Nature Medicine. (1999) 5, no. 12, 1365–1369, https://doi.org/10.1038/70932, 2-s2.0-0032736029.
- 4 Latchman Y., Wood C. R., Chernova T., Chaudhary D., Borde M., Chernova I., Iwai Y., Long A. J., Brown J. A., Nunes R., Greenfield E. A., Bourque K., Boussiotis V. A., Carter L. L., Carreno B. M., Malenkovich N., Nishimura H., Okazaki T., Honjo T., Sharpe A. H., and Freeman G. J., PD-L2 is a second ligand for PD-1 and inhibits T cell activation, Nature Immunology. (2001) 2, 261–268, https://doi.org/10.1038/85330, 2-s2.0-5844264920.
- 5 Yearley J., Gibson C., Yu N., Moon C., Murphy E., Juco J., Lunceford J., Cheng J., Chow L., Seiwert T., Handa M., Tomassini J., and McClanahan T., PD-L2 expression in human tumors: relevance to Anti-PD-1 therapy in cancer, Clinical Cancer Research. (2017) 23, no. 12, 3158–3167, https://doi.org/10.1158/1078-0432.CCR-16-1761, 2-s2.0-84978223801.
- 6 Zak K. M., Grudnik P., Magiera K., Dömling A., Dubin G., and Holak T. A., Structural biology of the immune checkpoint receptor PD-1 and Its ligands PD-L1/PD-L2, Structure. (2017) 25, no. 8, 1163–1174, https://doi.org/10.1016/j.str.2017.06.011, 2-s2.0-85026526632.
- 7 Zhang Y., Chung Y., Bishop C., Daugherty B., Chute H., Holst P., Kurahara C., Lott F., Sun N., Welcher A., and Dong C., Regulation of T cell activation and tolerance by PDL2, Proceedings of the National Academy of Sciences. (2006) 103, no. 31, 11695–11700, https://doi.org/10.1073/pnas.0601347103, 2-s2.0-33746854425.
- 8 Liu X., Gao J., Wen J., Yin L., Li O., Zuo T., Gajewski T., Fu Y., Zheng P., and Liu Y., B7DC/PDL2 promotes tumor immunity by a PD-1–independent mechanism, The Journal of Experimental Medicine. (2003) 197, no. 12, 1721–1730, https://doi.org/10.1084/jem.20022089, 2-s2.0-0037867039.
- 9 Shin T., Kennedy G., Gorski K., Tsuchiya H., Koseki H., Azuma M., Yagita H., Chen L., Powell J., Pardoll D., and Housseau F., Cooperative B7-1/2 (CD80/CD86) and B7-DC costimulation of CD4+ T cells independent of the PD-1 receptor, The Journal of Experimental Medicine. (2003) 198, no. 1, 31–38, https://doi.org/10.1084/jem.20030242, 2-s2.0-0038491416.
- 10 Wang S., Bajorath J., Flies D., Dong H., Honjo T., and Chen L., Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction, The Journal of Experimental Medicine. (2003) 197, no. 9, 1083–1091, https://doi.org/10.1084/jem.20021752, 2-s2.0-0038185203.
- 11 Buderath P., Schwich E., Jensen C., Horn P. A., Kimmig R., Kasimir-Bauer S., and Rebmann V., Soluble programmed death receptor ligands sPD-L1 and sPD-L2 as liquid biopsy markers for prognosis and platinum response in epithelial ovarian cancer, Frontiers in Oncology. (2019) 9, 1015–1024, https://doi.org/10.3389/fonc.2019.01015.
- 12 Takamochi K., Hara K., Hayashi T., Kohsaka S., Takahashi F., Suehara Y., Shimokawa M., and Suzuki K., Clinical relevance of PD-L2 expression in surgically resected lung adenocarcinoma, Lung Cancer. (2022) 168, 50–58, https://doi.org/10.1016/j.lungcan.2022.04.011.
- 13 Nakayama Y., Mimura K., Kua L.-F., Okayama H., Min A. K. T., Saito K., Hanayama H., Watanabe Y., Saito M., Momma T., Saze Z., Ohki S., Suzuki Y., Ichikawa D., Yong W.-P., and Kono K., Immune suppression caused by PD-L2 expression on tumor cells in gastric cancer, Gastric Cancer. (2020) 23, no. 6, 961–973, https://doi.org/10.1007/s10120-020-01079-z.
- 14 Shan Z.-G., Zhao Y.-L., Zhang J.-Y., Yan Z.-B., Wang T.-T., Mao F.-Y., Teng Y.-S., Peng L.-S., Chen W.-Y., Wang P., Cheng P., Tian W.-Q., Chen J., Chen W., and Zhuang Y., FasL+ PD-L2+ identifies a novel immunosuppressive neutrophil population in human gastric cancer that promotes disease progression, Advanced Science. (2022) 9, no. 5, 2103543–2103558, https://doi.org/10.1002/advs.202103543.
- 15 Okadome K., Baba Y., Yasuda-Yoshihara N., Nomoto D., Yagi T., Toihata T., Ogawa K., Sawayama H., Ishimoto T., Iwatsuki M., Iwagami S., Miyamoto Y., Yoshida N., Watanabe M., Komohara Y., and Baba H., PD-L1 and PD-L2 expression status in relation to chemotherapy in primary and metastatic esophageal squamous cell carcinoma, Cancer Science. (2022) 113, no. 2, 399–410, https://doi.org/10.1111/cas.15198.
- 16 Bruss C., Kellner K., Albert V., Hutchinson J. A., Seitz S., Ortmann O., Brockhoff G., and Wege A. K., Immune checkpoint profiling in humanized breast cancer mice revealed cell-specific LAG-3/PD-1/TIM-3 co-expression and elevated PD-1/TIM-3 secretion, Cancers. (2023) 15, no. 9, https://doi.org/10.3390/cancers15092615, 2615.
- 17 Choi J. E., Lee J. S., Jin M.-S., Nikas I. P., Kim K., Yang S., Park S. Y., Koh J., Yang S., Im S.-A., and Ryu H. S., The prognostic value of a combined immune score in tumor and immune cells assessed by immunohistochemistry in triple-negative breast cancer, Breast Cancer Research. (2023) 25, https://doi.org/10.1186/s13058-023-01710-8, 134.
- 18 Dioken D. N., Ozgul I., Yilmazbilek I., Yakicier M. C., Karaca E., and Erson-Bensan A. E., An alternatively spliced PD-L1 isoform PD-L1∆3, and PD-L2 expression in breast cancers: implications for eligibility scoring and immunotherapy response, Cancer Immunology, Immunotherapy. (2023) 72, 4065–4075, https://doi.org/10.1007/s00262-023-03543-y.
- 19 Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., and Jemal A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians. (2018) 68, no. 6, 394–424, https://doi.org/10.3322/caac.21492, 2-s2.0-85053395052.
- 20 Hoffmann O., Wormland S., Bittner A.-K., Collenburg M., Horn P. A., Kimmig R., Kasimir-Bauer S., and Rebmann V., Programmed death receptor ligand-2 (PD-L2) bearing extracellular vesicles as a new biomarker to identify early triple-negative breast cancer patients at high risk for relapse, Journal of Cancer Research and Clinical Oncology. (2022) 149, no. 3, 1159–1174, https://doi.org/10.1007/s00432-022-03980-9.
- 21 Kwa M., Makris A., and Esteva F. J., Clinical utility of gene-expression signatures in early stage breast cancer, Nature Reviews Clinical Oncology. (2017) 14, 595–610, https://doi.org/10.1038/nrclinonc.2017.74, 2-s2.0-85030612526.
- 22 Harbeck N., Penault-Llorca F., Cortes J., Gnant M., Houssami N., Poortmans P., Ruddy K., Tsang J., and Cardoso F., Breast cancer, Nature Reviews Disease Primers. (2019) 5, no. 1, 66–96, https://doi.org/10.1038/s41572-019-0111-2, 2-s2.0-85072553302.
- 23 Esteva F. J., Hubbard-Lucey V. M., Tang J., and Pusztai L., Immunotherapy and targeted therapy combinations in metastatic breast cancer, The Lancet Oncology. (2019) 20, no. 3, e175–e186, https://doi.org/10.1016/S1470-2045(19)30026-9, 2-s2.0-85062244455.
- 24 Hanamura T., Kitano S., Kagamu H., Yamashita M., Terao M., Tsuda B., Okamura T., Kumaki N., Hozumi K., Harada N., Iwamoto T., Honda C., Kurozumi S., and Niikura N., Immunological profiles of the breast cancer microenvironment represented by tumor-infiltrating lymphocytes and PD-L1 expression, Scientific Reports. (2022) 12, https://doi.org/10.1038/s41598-022-11578-x, 8098.
- 25 Galluzzi L., Chan T. A., Kroemer G., Wolchok J. D., and López-Soto A., The hallmarks of successful anticancer immunotherapy, Science Translational Medicine. (2018) 10, no. 459, 7807–7820, https://doi.org/10.1126/scitranslmed.aat7807, 2-s2.0-85053503895.
- 26 Jia H., Truica C. I., Wang B., Wang Y., Ren X., Harvey H. A., Song J., and Yang J.-M., Immunotherapy for triple-negative breast cancer: existing challenges and exciting prospects, Drug Resistance Updates. (2017) 32, 1–15, https://doi.org/10.1016/j.drup.2017.07.002, 2-s2.0-85029543059.
- 27 Sanmamed M. F. and Chen L., A paradigm shift in cancer immunotherapy: from enhancement to normalization, Cell. (2019) 176, no. 3, https://doi.org/10.1016/j.cell.2019.01.008, 2-s2.0-85059658794, 677.
- 28 Hamid O., Robert C., Daud A., Hodi F. S., Hwu W.-J., Kefford R., Wolchok J. D., Hersey P., Joseph R. W., Weber J. S., Dronca R., Gangadhar T. C., Patnaik A., Zarour H., Joshua A. M., Gergich K., Elassaiss-Schaap J., Algazi A., Mateus C., Boasberg P., Tumeh P. C., Chmielowski B., Ebbinghaus S. W., Li X. N., Kang S. P., and Ribas A., Safety and tumor responses with lambrolizumab (Anti–PD-1) in melanoma, New England Journal of Medicine. (2013) 369, no. 2, 134–144, https://doi.org/10.1056/NEJMoa1305133, 2-s2.0-84879759020.
- 29 Robert C., Ribas A., Wolchok J. D., Hodi F. S., Hamid O., Kefford R., Weber J. S., Joshua A. M., Hwu W.-J., Gangadhar T. C., Patnaik A., Dronca R., Zarour H., Joseph R. W., Boasberg P., Chmielowski B., Mateus C., Postow M. A., Gergich K., Elassaiss-Schaap J., Li X. N., Iannone R., Ebbinghaus S. W., Kang S. P., and Daud A., Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial, The Lancet. (2014) 384, no. 9948, 1109–1117, https://doi.org/10.1016/S0140-6736(14)60958-2, 2-s2.0-84908354848.
- 30 Sul J., Blumenthal G. M., Jiang X., He K., Keegan P., and Pazdur R., FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1, The Oncologist. (2016) 21, no. 5, 643–650, https://doi.org/10.1634/theoncologist.2015-0498, 2-s2.0-84966341112.
- 31 Motzer R. J., Escudier B., McDermott D. F., George S., Hammers H. J., Srinivas S., Tykodi S. S., Sosman J. A., Procopio G., Plimack E. R., Castellano D., Choueiri T. K., Gurney H., Donskov F., Bono P., Wagstaff J., Gauler T. C., Ueda T., Tomita Y., Schutz F. A., Kollmannsberger C., Larkin J., Ravaud A., Simon J. S., Xu L.-A., Waxman I. M., Sharma P., and for the CheckMate 025 Investigators, Nivolumab versus everolimus in advanced renal-cell carcinoma, New England Journal of Medicine. (2015) 373, no. 19, 1803–1813, https://doi.org/10.1056/NEJMoa1510665, 2-s2.0-84946607195.
- 32 Doroshow D. B., Bhalla S., Beasley M. B., Sholl L. M., Kerr K. M., Gnjatic S., Wistuba I. I., Rimm D. L., Tsao M. S., and Hirsch F. R., PD-L1 as a biomarker of response to immune-checkpoint inhibitors, Nature Reviews Clinical Oncology. (2021) 18, 345–362, https://doi.org/10.1038/s41571-021-00473-5.
- 33 Gong J., Chehrazi-Raffle A., Reddi S., and Salgia R., Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations, Journal for ImmunoTherapy of Cancer. (2018) 6, no. 1, 8–25, https://doi.org/10.1186/s40425-018-0316-z, 2-s2.0-85040860527.
- 34 Amin M. B., Greene F. L., Edge S. B., Compton C. C., Gershenwald J. E., Brookland R. K., Meyer L., Gress D. M., Byrd D. R., and Winchester D. P., The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging, CA: A Cancer Journal for Clinicians. (2017) 67, no. 2, 93–99, https://doi.org/10.3322/caac.21388, 2-s2.0-85009446471.
- 35 Rozali E. N., Hato S. V., Robinson B. W., Lake R. A., and Lesterhuis W. J., Programmed death ligand 2 in cancer-induced immune suppression, Clinical & Developmental Immunology. (2012) 2012, 8, https://doi.org/10.1155/2012/656340, 2-s2.0-84861064002, 656340.
- 36 Ohaegbulam K. C., Assal A., Lazar-Molnar E., Yao Y., and Zang X., Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway, Trends in Molecular Medicine. (2015) 21, no. 1, 24–33, https://doi.org/10.1016/j.molmed.2014.10.009, 2-s2.0-84925529257.
- 37 Tanegashima T., Togashi Y., Azuma K., Kawahara A., Ideguchi K., Sugiyama D., Kinoshita F., Akiba J., Kashiwagi E., Takeuchi A., Irie T., Tatsugami K., Hoshino T., Eto M., and Nishikawa H., Immune suppression by PD-L2 against spontaneous and treatment-related antitumor immunity, Clinical Cancer Research. (2019) 25, no. 15, 4808–4819, https://doi.org/10.1158/1078-0432.CCR-18-3991, 2-s2.0-85069202744.
- 38 Nielsen C., Ohm-Laursen L., Barington T., Husby S., and Lillevang S. T., Alternative splice variants of the human PD-1 gene, Cellular Immunology. (2005) 235, no. 2, 109–116, https://doi.org/10.1016/j.cellimm.2005.07.007, 2-s2.0-27744560614.
- 39 Peng Y., Zhang C., Rui Z., Tang W., Xu Y., Tao X., Zhao Q., and Tong X., A comprehensive profiling of soluble immune checkpoints from the sera of patients with non-small cell lung cancer, Journal of Clinical Laboratory Analysis. (2022) 36, no. 2, 24224–24232, https://doi.org/10.1002/jcla.24224.
- 40 Shinchi Y., Komohara Y., Yonemitsu K., Sato K., Ohnishi K., Saito Y., Fujiwara Y., Mori T., Shiraishi K., Ikeda K., and Suzuki M., Accurate expression of PD-L1/L2 in lung adenocarcinoma cells: a retrospective study by double immunohistochemistry, Cancer Science. (2019) 110, no. 9, 2711–2721, https://doi.org/10.1111/cas.14128, 2-s2.0-85071783200.
- 41 Takamori S., Takada K., Azuma K., Jogo T., Shimokawa M., Toyokawa G., Hirai F., Tagawa T., Kawahara A., Akiba J., Okamoto I., Nakanishi Y., Oda Y., Hoshino T., and Maehara Y., Prognostic impact of programmed death-ligand 2 expression in primary lung adenocarcinoma patients, Annals of Surgical Oncology. (2019) 26, 1916–1924, https://doi.org/10.1245/s10434-019-07231-z, 2-s2.0-85062526540.
- 42 Zhang Y., Wang L., Li Y., Pan Y., Wang R., Hu H., Li H., Luo X., Ye T., Sun Y., and Chen H., Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma, OncoTargets and Therapy. (2014) 7, 567–573, https://doi.org/10.2147/OTT.S59959, 2-s2.0-84898843963.