Pyroptosis-Related Signature Predicts the Progression of Ulcerative Colitis and Colitis-Associated Colorectal Cancer as well as the Anti-TNF Therapeutic Response
Yumei Ning
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorKun Lin
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorJun Fang
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Renmin Hospital of Huangmei County, Huanggang, China
Search for more papers by this authorXiaojia Chen
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorXinyi Hu
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorLan Liu
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorCorresponding Author
Qiu Zhao
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorCorresponding Author
Haizhou Wang
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorCorresponding Author
Fan Wang
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorYumei Ning
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorKun Lin
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorJun Fang
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Renmin Hospital of Huangmei County, Huanggang, China
Search for more papers by this authorXiaojia Chen
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorXinyi Hu
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorLan Liu
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorCorresponding Author
Qiu Zhao
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorCorresponding Author
Haizhou Wang
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorCorresponding Author
Fan Wang
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China znhospital.cn
Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
Search for more papers by this authorAbstract
Ulcerative colitis (UC) is a complex intestinal inflammation with an increasing risk of colitis-associated colorectal cancer (CAC). However, the pathogenesis is still unclear between active UC and inactive UC. Recently, it has been reported that pyroptosis-related genes (PRGs) are closely associated with inflammatory disease activity. Nevertheless, the specific roles of PRGs in the progression and treatment of UC and CAC remain unclear. In this study, we identified 30 differentially expressed PRGs based on the immune landscape of active and inactive UC samples. Meanwhile, weighted gene coexpression network analysis was applied to explore important genes associated with active UC. By intersecting with the differentially expressed PRGs, CASP5, GBP1, GZMB, IL1B, and IRF1 were selected as key PRGs to construct a pyroptosis-related signature (PR-signature). Then, logistic regression analysis was performed to validate the PR-signature and establish a pyroptosis-related score (PR-Score). We demonstrated that PR-Score had a powerful ability to distinguish active UC from inactive UC in multiple datasets. Besides, PR-Score was positively correlated with immune cell infiltration and inflammatory microenvironment in UC. Lower PR-Score was associated with a better response to anti-TNF therapy for patients with UC. Additionally, high-PR-Score was found to suppress CAC and improve the survival outcomes of patients with colorectal cancer. Finally, the levels of the PR-signature genes were validated both in vitro and in vivo. These findings can improve our understanding of PRGs in UC and provide new markers for predicting the occurrence of active UC or CAC and the treatment of UC.
Conflicts of Interest
No potential conflicts of interest were disclosed.
Open Research
Data Availability
Publicly available datasets were analyzed in this study. These data can be found here: https://portal.gdc.cancer.gov/ and https://www.ncbi.nlm.nih.gov/geo/. All processed data and R codes used in this study can be obtained from the corresponding authors on reasonable request.
Supporting Information
Filename | Description |
---|---|
jimr7040113-sup-0001-f1.zipapplication/x-compressed, 16.1 MB | Supplementary Materials Figure S1: the principal component analysis of before and after batch correction of all samples in the training set. Figure S2: determination of soft-thresholding power in the coexpression network. Figure S3: the correlation of the PR-Score and PR-clusters. Figure S4: representative IHC images showing the expressions of 5 PR-signature genes in normal, DSS-induced colitis, and AOM/DSS-induced CAC tissues of mice. Table S1: detailed information of all datasets and included samples. Table S2: summary of 75 recognized pyroptosis-related genes. Table S3: the primer sequences of CASP5, GBP1, GZMB, IL1B, and IRF1. Table S4: differential expression analysis of pyroptosis-related genes in the training set (active UC vs. inactive UC). Table S5: differential expression analysis of pyroptosis-related genes in GSE75214 (active UC vs. inactive UC). Table S6: standard weight of each gene in WGCNA. Table S7: logistic regression analysis for the key PRGs. Table S8: correlation of clinicopathologic characteristics and PR-Score in GSE111889. Table S9: correlation of clinicopathologic characteristics and PR-Score in GSE94648. Table S10: correlation of clinicopathologic characteristics and PR-Score in TCGA. Table S11: correlation of clinicopathologic characteristics and PR-Score in GSE39582. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Ng S. C., Shi H. Y., Hamidi N., Underwood F. E., Tang W., Benchimol E. I., Panaccione R., Ghosh S., Wu J. C. Y., Chan F. K. L., Sung J. J. Y., and Kaplan G. G., Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies, The Lancet. (2017) 390, no. 10114, 2769–2778, https://doi.org/10.1016/S0140-6736(17)32448-0, 2-s2.0-85031499214, 29050646.
- 2 Short S. P., Pilat J. M., Barrett C. W., Reddy V. K., Haberman Y., Hendren J. R., Marsh B. J., Keating C. E., Motley A. K., Hill K. E., Zemper A. E., Washington M. K., Shi C., Chen X., Wilson K. T., Hyams J. S., Denson L. A., Burk R. F., Rosen M. J., and Williams C. S., Colonic epithelial-derived selenoprotein P is the source for antioxidant-mediated protection in colitis-associated cancer, Gastroenterology. (2021) 160, no. 5, 1694–1708.e3, https://doi.org/10.1053/j.gastro.2020.12.059, 33388316.
- 3 Lu J.-W., Rouzigu A., Teng L.-H., and Liu W.-L., The construction and comprehensive analysis of inflammation-related ce RNA networks and tissue-infiltrating immune cells in ulcerative progression, BioMed Research International. (2021) 2021, 6633442, https://doi.org/10.1155/2021/6633442.
- 4 Boland B. S., He Z., Tsai M. S., Olvera J. G., Omilusik K. D., Duong H. G., Kim E. S., Limary A. E., Jin W., Milner J. J., Yu B., Patel S. A., Louis T. L., Tysl T., Kurd N. S., Bortnick A., Quezada L. K., Kanbar J. N., Miralles A., Huylebroeck D., Valasek M. A., Dulai P. S., Singh S., Lu L. F., Bui J. D., Murre C., Sandborn W. J., Goldrath A. W., Yeo G. W., and Chang J. T., Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses, Science immunology. (2020) 5, no. 50, https://doi.org/10.1126/sciimmunol.abb4432, 32826341.
- 5
Cohen B. L. and
Sachar D. B., Update on anti-tumor necrosis factor agents and other new drugs for inflammatory bowel disease, BMJ. (2017) 357, article j2505, https://doi.org/10.1136/bmj.j2505, 2-s2.0-85021160258.
10.1136/bmj.j2505 Google Scholar
- 6 Bank S, Andersen P. S., Burisch J., Pedersen N., Roug S., Galsgaard J., Turino S. Y., Brodersen J. B., Rashid S., Rasmussen B. K., and Avlund S., Associations between functional polymorphisms in the NFκB signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease, The pharmacogenomics journal. (2014) 14, no. 6, 526–534, https://doi.org/10.1038/tpj.2014.19, 2-s2.0-84927177410, 24776844.
- 7 Kovacs S. B. and Miao E. A., Gasdermins: effectors of pyroptosis, Trends in cell biology. (2017) 27, no. 9, 673–684, https://doi.org/10.1016/j.tcb.2017.05.005, 2-s2.0-85020444529.
- 8 Shi J., Gao W., and Shao F., Pyroptosis: gasdermin-mediated programmed necrotic cell death, Trends in Biochemical Sciences. (2017) 42, no. 4, 245–254, https://doi.org/10.1016/j.tibs.2016.10.004, 2-s2.0-85007439966, 27932073.
- 9 Gu L., Sun Y., Wu T., Chen G., Tang X., Zhao L., He L., Hu Z., Sun L., Pan F., Yin Z., and Guo Z., A novel mechanism for macrophage pyroptosis in rheumatoid arthritis induced by Pol β deficiency, Cell Death & Disease. (2022) 13, no. 7, https://doi.org/10.1038/s41419-022-05047-6, 35794098.
- 10 Xia X., Wang X., Cheng Z., Qin W., Lei L., Jiang J., and Hu J., The role of pyroptosis in cancer: pro-cancer or pro-"host"?, Cell Death & Disease. (2019) 10, no. 9, https://doi.org/10.1038/s41419-019-1883-8, 2-s2.0-85071982908, 31501419.
- 11 García-Pras E., Fernández-Iglesias A., Gracia-Sancho J., and Pérez-Del-Pulgar S., Cell death in hepatocellular carcinoma: pathogenesis and therapeutic opportunities, Cancers. (2022) 14, no. 1, https://doi.org/10.3390/cancers14010048.
- 12 Zhou C.-B. and Fang J.-Y., The role of pyroptosis in gastrointestinal cancer and immune responses to intestinal microbial infection, Cancer. (2019) 1872, no. 1, 1–10, https://doi.org/10.1016/j.bbcan.2019.05.001, 2-s2.0-85065917482.
- 13 Rogler G., Chronic ulcerative colitis and colorectal cancer, Cancer letters. (2014) 345, no. 2, 235–241, https://doi.org/10.1016/j.canlet.2013.07.032, 2-s2.0-84896713816.
- 14 Yu H., Fu Y., Tang Z., Jiang L., Qu C., Li H., Tan Z., Shu D., Peng Y., and Liu S., A novel pyroptosis-related signature predicts prognosis and response to treatment in breast carcinoma, Aging. (2022) 14, no. 2, 989–1013, https://doi.org/10.18632/aging.203855.
- 15 Lin W., Chen Y., Wu B., Chen Y., and Li Z., Identification of the pyroptosis‑related prognostic gene signature and the associated regulation axis in lung adenocarcinoma, Cell death discovery. (2021) 7, no. 1, https://doi.org/10.1038/s41420-021-00557-2, 34226539.
- 16 Chao B., Jiang F., Bai H., Meng P., Wang L., and Wang F., Predicting the prognosis of glioma by pyroptosis-related signature, Journal of Cellular and Molecular Medicine. (2022) 26, no. 1, 133–143, https://doi.org/10.1111/jcmm.17061, 34816605.
- 17 Langfelder P. and Horvath S., WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics. (2008) 9, no. 1, https://doi.org/10.1186/1471-2105-9-559, 2-s2.0-60549111634, 19114008.
- 18 Stoltzfus J. C., Logistic regression: a brief primer, Academic Emergency Medicine. (2011) 18, no. 10, 1099–1104, https://doi.org/10.1111/j.1553-2712.2011.01185.x, 2-s2.0-80054694914, 21996075.
- 19 Yang Z., Yan G., Zheng L., Gu W., Liu F., Chen W., Cui X., Wang Y., Yang Y., Chen X., Fu Y., and Xu X., YKT6, as a potential predictor of prognosis and immunotherapy response for oral squamous cell carcinoma, is related to cell invasion, metastasis, and CD8+ T cell infiltration, Oncoimmunology. (2021) 10, no. 1, https://doi.org/10.1080/2162402X.2021.1938890, 34221701.
- 20 Song W., Ren J., Xiang R., Kong C., and Fu T., Identification of pyroptosis-related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in colorectal cancer, Oncoimmunology. (2021) 10, no. 1, https://doi.org/10.1080/2162402X.2021.1987636, 34676149.
- 21 Zeng R., Huang S., Qiu X., Zhuo Z., Wu H., Jiang L., Sha W., and Chen H., Predicting the prognosis of esophageal adenocarcinoma by a pyroptosis-related gene signature, Frontiers in Pharmacology. (2021) 12, article 767187, https://doi.org/10.3389/fphar.2021.767187, 34867395.
- 22 Ravasz E., Somera A. L., Mongru D. A., Oltvai Z. N., and Barabási A. L., Hierarchical organization of modularity in metabolic networks, Science. (2002) 297, no. 5586, 1551–1555, https://doi.org/10.1126/science.1073374, 2-s2.0-0037199968.
- 23 Wilkerson M. D. and Hayes D. N., ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, Bioinformatics. (2010) 26, no. 12, 1572–1573, https://doi.org/10.1093/bioinformatics/btq170, 2-s2.0-77954182362, 20427518.
- 24 Dong S., Lu Y., Peng G., Li J., Li W., Li M., Wang H., Liu L., and Zhao Q., Furin inhibits epithelial cell injury and alleviates experimental colitis by activating the Nrf2-Gpx4 signaling pathway, Digestive and liver disease. (2021) 53, no. 10, 1276–1285, https://doi.org/10.1016/j.dld.2021.02.011.
- 25 Yassin M., Sadowska Z., Djurhuus D., Nielsen B., Tougaard P., Olsen J., and Pedersen A. E., Upregulation of PD-1 follows tumour development in the AOM/DSS model of inflammation-induced colorectal cancer in mice, Immunology. (2019) 158, no. 1, 35–46, https://doi.org/10.1111/imm.13093, 2-s2.0-85071039628, 31429085.
- 26 De Robertis M., Massi E., Poeta M. L., Carotti S., Morini S., Cecchetelli L., Signori E., and Fazio V. M., The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies, Journal of carcinogenesis. (2011) 10, no. 1, https://doi.org/10.4103/1477-3163.78279, 2-s2.0-82955230494.
- 27 Zhuang L., Yao Y., Peng L., Cui F., Chen C., Zhang Y., Sun L., Yu Q., and Lin K., Silencing GS homeobox 2 alleviates gemcitabine resistance in pancreatic cancer cells by activating SHH/GLI1 signaling pathway, Digestive Diseases and Sciences. (2022) 67, no. 8, 3773–3782, https://doi.org/10.1007/s10620-021-07262-1, 34623580.
- 28 Takaya A., Peng W. X., Ishino K., Kudo M., Yamamoto T., Wada R., Takeshita T., and Naito Z., Cystatin B as a potential diagnostic biomarker in ovarian clear cell carcinoma, International Journal of Oncology. (2015) 46, no. 4, 1573–1581, https://doi.org/10.3892/ijo.2015.2858, 2-s2.0-84923098813, 25633807.
- 29 Xu W., Liu F., Tang W., Gu Y., Zhong J., Cui L., and du P., The Mayo endoscopic score is a novel predictive indicator for malignant transformation in ulcerative colitis: a long-term follow-up multicenter study, Frontiers in surgery. (2022) 9, article 832219, https://doi.org/10.3389/fsurg.2022.832219, 35372478.
- 30 Zuo Y., Chen L., Gu H., He X., Ye Z., Wang Z., Shao Q., and Xue C., GSDMD-mediated pyroptosis: a critical mechanism of diabetic nephropathy, Expert Reviews in Molecular Medicine. (2021) 23, article e23, https://doi.org/10.1017/erm.2021.27, 34955116.
- 31 Pugliese D., Felice C., Papa A., Gasbarrini A., Rapaccini G. L., Guidi L., and Armuzzi A., Anti TNF-α therapy for ulcerative colitis: current status and prospects for the future, Expert Review of Clinical Immunology. (2017) 13, no. 3, 223–233, https://doi.org/10.1080/1744666X.2017.1243468, 2-s2.0-85012964813, 27687496.
- 32 Joos H., Wildner A., Hogrefe C., Reichel H., and Brenner R. E., Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage, Arthritis Research & Therapy. (2013) 15, no. 5, https://doi.org/10.1186/ar4299, 2-s2.0-84883683952, 24034344.
- 33 Ma L., Li X.-W., Zhang S.-J., Yang F., Zhu G. M., Yuan X. B., and Jiang W., Interleukin-1 beta guides the migration of cortical neurons, Journal of Neuroinflammation. (2014) 11, no. 1, https://doi.org/10.1186/1742-2094-11-114, 2-s2.0-84902754088, 24950657.
- 34 Patankar J. V. and Becker C., Cell death in the gut epithelium and implications for chronic inflammation, Nature Reviews. Gastroenterology & Hepatology. (2020) 17, no. 9, 543–556, https://doi.org/10.1038/s41575-020-0326-4, 32651553.
- 35 Li D. F., Chang X., Zhao J. L., Chen X. M., Xu Z. L., Zhang D. G., Wu B. H., Wang L. S., Bai Y., and Yao J., Colonic epithelial PHLPP2 deficiency promotes colonic epithelial pyroptosis by activating the NF-κB signaling pathway, Oxidative Medicine and Cellular Longevity. (2021) 2021, 14, 5570731, https://doi.org/10.1155/2021/5570731.
- 36 Flood B., Oficjalska K., Laukens D., Fay J., O′Grady A., Caiazza F., Heetun Z., Mills K. H. G., Sheahan K., Ryan E. J., Doherty G. A., Kay E., and Creagh E. M., Altered expression of caspases-4 and -5 during inflammatory bowel disease and colorectal cancer: diagnostic and therapeutic potential, Clinical and Experimental Immunology. (2015) 181, no. 1, 39–50, https://doi.org/10.1111/cei.12617, 2-s2.0-84930678168, 25943872.
- 37 Bolívar B. E., Brown-Suedel A. N., Rohrman B. A., Charendoff C. I., Yazdani V., Belcher J. D., Vercellotti G. M., Flanagan J. M., and Bouchier-Hayes L., Noncanonical roles of caspase-4 and caspase-5 in heme-driven IL-1β release and cell death, Journal of immunology. (2021) 206, no. 8, 1878–1889, https://doi.org/10.4049/jimmunol.2000226, 33741688.
- 38 Reis L. F., Harada H., Wolchok J. D., Taniguchi T., and Vilcek J., Critical role of a common transcription factor, IRF-1, in the regulation of IFN-beta and IFN-inducible genes, The EMBO Journal. (1992) 11, no. 1, 185–193, https://doi.org/10.1002/j.1460-2075.1992.tb05041.x, 1371248.
- 39 Ohteki T., Yoshida H., Matsuyama T., Duncan G. S., Mak T. W., and Ohashi P. S., The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells, The Journal of Experimental Medicine. (1998) 187, no. 6, 967–972, https://doi.org/10.1084/jem.187.6.967, 2-s2.0-0032536787, 9500799.
- 40 Fang K., Grisham M. B., and Kevil C. G., Application of comparative transcriptional genomics to identify molecular targets for pediatric IBD, Frontiers in immunology. (2015) 6, https://doi.org/10.3389/fimmu.2015.00165, 2-s2.0-84934288824.
- 41 Tang R., Yang G., Zhang S., Wu C., and Chen M., Opposite effects of interferon regulatory factor 1 and osteopontin on the apoptosis of epithelial cells induced by TNF-α in inflammatory bowel disease, Inflammatory Bowel Diseases. (2014) 20, no. 11, 1950–1961, https://doi.org/10.1097/MIB.0000000000000192, 2-s2.0-84925688608, 25208103.
- 42 Cupi M. L., Sarra M., Marafini I., Monteleone I., Franzè E., Ortenzi A., Colantoni A., Sica G., Sileri P., Rosado M. M., Carsetti R., MacDonald T. T., Pallone F., and Monteleone G., Plasma cells in the mucosa of patients with inflammatory bowel disease produce granzyme B and possess cytotoxic activities, Journal of immunology. (2014) 192, no. 12, 6083–6091, https://doi.org/10.4049/jimmunol.1302238, 2-s2.0-84902185472, 24835396.
- 43 Tsuchiya K., Switching from apoptosis to pyroptosis: gasdermin-elicited inflammation and antitumor immunity, International journal of molecular sciences. (2021) 22, no. 1, https://doi.org/10.3390/ijms22010426, 33406603.
- 44 Haque M., Singh A. K., Ouseph M. M., and Ahmed S., Regulation of synovial inflammation and tissue destruction by guanylate binding protein 5 in synovial fibroblasts from patients with rheumatoid arthritis and rats with adjuvant-induced arthritis, Arthritis & Rhematology. (2021) 73, no. 6, 943–954, https://doi.org/10.1002/art.41611, 33615742.
- 45 Zhang F., Mears J. R., Shakib L., Beynor J. I., Shanaj S., Korsunsky I., Nathan A., Donlin L. T., and Raychaudhuri S., IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation, Genome Medicine. (2021) 13, no. 1, https://doi.org/10.1186/s13073-021-00881-3, 33879239.
- 46 Drury B., Hardisty G., Gray R. D., and Ho G.-T., Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation, Cellular and Molecular Gastroenterology and Hepatology. (2021) 12, no. 1, 321–333, https://doi.org/10.1016/j.jcmgh.2021.03.002.
- 47 Bal S. M., Golebski K., and Spits H., Plasticity of innate lymphoid cell subsets, Nature reviews Immunology. (2020) 20, no. 9, 552–565, https://doi.org/10.1038/s41577-020-0282-9.
- 48 Maul J., Loddenkemper C., Mundt P., Berg E., Giese T., Stallmach A., Zeitz M., and Duchmann R., Peripheral and intestinal regulatory CD4+CD25high T cells in inflammatory bowel disease, Gastroenterology. (2005) 128, no. 7, 1868–1878, https://doi.org/10.1053/j.gastro.2005.03.043, 2-s2.0-20444434616, 15940622.
- 49 Chen Z., Tang M., Huang D., Jiang W., Li M., Ji H., Park J., Xu B., Atchison L. J., Truskey G. A., and Leong K. W., Real-time observation of leukocyte-endothelium interactions in tissue-engineered blood vessel, Lab on a Chip. (2018) 18, no. 14, 2047–2054, https://doi.org/10.1039/C8LC00202A, 2-s2.0-85049924416, 29927449.
- 50 Salvador-Martín S., Kaczmarczyk B., Álvarez R., Navas-López V. M., Gallego-Fernández C., Moreno-Álvarez A., Solar-Boga A., Sánchez C., Tolin M., Velasco M., Muñoz-Codoceo R., Rodriguez-Martinez A., Vayo C. A., Bossacoma F., Pujol-Muncunill G., Fobelo M. J., Millán-Jiménez A., Magallares L., Martínez-Ojinaga E., Loverdos I., Eizaguirre F. J., Blanca-García J. A., Clemente S., García-Romero R., Merino-Bohórquez V., González de Caldas R., Vázquez E., Dopazo A., Sanjurjo-Sáez M., and López-Fernández L. A., Whole transcription profile of responders to anti-TNF drugs in pediatric inflammatory bowel disease, Pharmaceutics. (2021) 13, no. 1, https://doi.org/10.3390/pharmaceutics13010077.
- 51 Lykowska-Szuber L., Walczak M., Skrzypczak-Zielinska M., Suszynska-Zajczyk J., Stawczyk-Eder K., Waszak K., Eder P., Wozniak A., Krela-Kazmierczak I., Slomski R., and Dobrowolska A., Effect of anti-TNF therapy on mucosal apoptosis genes expression in Crohn′s disease, Frontiers in immunology. (2021) 12, article 615539, https://doi.org/10.3389/fimmu.2021.615539, 33767696.
- 52 Kantono M. and Guo B., Inflammasomes and cancer: the dynamic role of the inflammasome in tumor development, Frontiers in immunology. (2017) 8, https://doi.org/10.3389/fimmu.2017.01132, 2-s2.0-85029684180, 28955343.
- 53 Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V. G., Wu H., and Lieberman J., Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores, Nature. (2016) 535, no. 7610, 153–158, https://doi.org/10.1038/nature18629, 2-s2.0-84978374487, 27383986.
- 54 Zhong F. L., Mamaï O., Sborgi L., Boussofara L., Hopkins R., Robinson K., Szeverényi I., Takeichi T., Balaji R., Lau A., Tye H., Roy K., Bonnard C., Ahl P. J., Jones L. A., Baker P. J., Lacina L., Otsuka A., Fournie P. R., Malecaze F., Lane E. B., Akiyama M., Kabashima K., Connolly J. E., Masters S. L., Soler V. J., Omar S. S., McGrath J. A., Nedelcu R., Gribaa M., Denguezli M., Saad A., Hiller S., and Reversade B., Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation, Cell. (2016) 167, no. 1, 187–202.e17, https://doi.org/10.1016/j.cell.2016.09.001, 2-s2.0-84988622178, 27662089.
- 55 Kolb R., Phan L., Borcherding N., Liu Y., Yuan F., Janowski A. M., Xie Q., Markan K. R., Li W., Potthoff M. J., Fuentes-Mattei E., Ellies L. G., Knudson C. M., Lee M. H., Yeung S. C. J., Cassel S. L., Sutterwala F. S., and Zhang W., Obesity-associated NLRC4 inflammasome activation drives breast cancer progression, Nature Communications. (2016) 7, no. 1, https://doi.org/10.1038/ncomms13007, 2-s2.0-84990848498, 27708283.
- 56 Chen G. Y. and Núñez G., Inflammasomes in intestinal inflammation and cancer, Gastroenterology. (2011) 141, no. 6, 1986–1999, https://doi.org/10.1053/j.gastro.2011.10.002, 2-s2.0-81855228056, 22005480.
- 57 Allen I. C., TeKippe E. M., Woodford R.-M. T., Uronis J. M., Holl E. K., Rogers A. B., Herfarth H. H., Jobin C., and Ting J. P. Y., The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer, The Journal of Experimental Medicine. (2010) 207, no. 5, 1045–1056, https://doi.org/10.1084/jem.20100050, 2-s2.0-77952303410.
- 58 Man S. M., Zhu Q., Zhu L., Liu Z., Karki R., Malik A., Sharma D., Li L., Malireddi R. K. S., Gurung P., Neale G., Olsen S. R., Carter R. A., McGoldrick D. J., Wu G., Finkelstein D., Vogel P., Gilbertson R. J., and Kanneganti T. D., Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer, Cell. (2015) 162, no. 1, 45–58, https://doi.org/10.1016/j.cell.2015.06.001, 2-s2.0-84934346989, 26095253.
- 59 Wilson J. E., Petrucelli A. S., Chen L., Koblansky A. A., Truax A. D., Oyama Y., Rogers A. B., Brickey W. J., Wang Y., Schneider M., Mühlbauer M., Chou W. C., Barker B. R., Jobin C., Allbritton N. L., Ramsden D. A., Davis B. K., and Ting J. P. Y., Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt, Nature medicine. (2015) 21, no. 8, 906–913, https://doi.org/10.1038/nm.3908, 2-s2.0-84938996802, 26107252.