RNA-Seq Profiling to Investigate the Mechanism of Qishen Granules on Regulating Mitochondrial Energy Metabolism of Heart Failure in Rats
Hao He
School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorChangxiang Li
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorXiangyu Lu
Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorYanqin Li
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorXuan Li
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorXiaoqian Sun
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorCorresponding Author
Binghua Tang
School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorCorresponding Author
Yan Wu
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
Search for more papers by this authorCorresponding Author
Chun Li
Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China meb.gov.tr
Search for more papers by this authorHao He
School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorChangxiang Li
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorXiangyu Lu
Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorYanqin Li
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorXuan Li
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorXiaoqian Sun
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorCorresponding Author
Binghua Tang
School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Search for more papers by this authorCorresponding Author
Yan Wu
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
Search for more papers by this authorCorresponding Author
Chun Li
Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China bucm.edu.cn
Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China meb.gov.tr
Search for more papers by this authorAbstract
Background. Qishen granules (QSG) are a frequently prescribed formula with cardioprotective properties prescribed to HF for many years. RNA-seq profiling revealed that regulation on cardiac mitochondrial energy metabolism is the main therapeutic effect. However, the underlying mechanism is still unknown. In this study, we explored the effects of QSG on regulating mitochondrial energy metabolism and oxidative stress through the PGC-1α/NRF1/TFAM signaling pathway. RNA-seq technology revealed that QSG significantly changed the differential gene expression of mitochondrial dysfunction in myocardial ischemic tissue. The mechanism was verified through the left anterior descending artery- (LAD-) induced HF rat model and oxygen glucose deprivation/recovery- (OGD/R-) established H9C2 induction model both in vivo and in vitro. Echocardiography and HE staining showed that QSG could effectively improve the cardiac function of rats with myocardial infarction in functionality and structure. Furthermore, transcriptomics revealed QSG could significantly regulate mitochondrial dysfunction-related proteins at the transcriptome level. The results of electron microscopy and immunofluorescence proved that the mitochondrial morphology, mitochondrial membrane structural integrity, and myocardial oxidative stress damage can be effectively improved after QSG treatment. Mechanism studies showed that QSG increased the expression level of mitochondrial biogenesis factor PGC-1α/NRF1/TFAM protein and regulated the balance of mitochondrial fusion/fission protein expression. QSG could regulate mitochondrial dysfunction in ischemia heart tissue to protect cardiac function and structure in HF rats. The likely mechanism is the adjustment of PGC-1α/NRF1/TFAM pathway to alleviate oxidative stress in myocardial cells. Therefore, PGC-1α may be a potential therapeutic target for improving mitochondrial dysfunction in HF.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Open Research
Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.
References
- 1 Hao G., Wang X., Chen Z., Zhang L., Zhang Y., Wei B., Zheng C., Kang Y., Jiang L., Zhu Z., Zhang J., Wang Z., and Gao R., Prevalence of heart failure and left ventricular dysfunction in China: the China hypertension survey, 2012-2015, European Journal of Heart Failure. (2019) 21, no. 11, 1329–1337, https://doi.org/10.1002/ejhf.1629.
- 2 Stanley W. C., Recchia F. A., and Lopaschuk G. D., Myocardial substrate metabolism in the normal and failing heart, Physiological Reviews. (2005) 85, no. 3, 1093–1129, https://doi.org/10.1152/physrev.00006.2004, 2-s2.0-21244492310.
- 3 Abate M., Festa A., Falco M., Lombardi A., Luce A., Grimaldi A., Zappavigna S., Sperlongano P., Irace C., Caraglia M., and Misso G., Mitochondria as playmakers of apoptosis, autophagy and senescence, Seminars in Cell & Developmental Biology. (2020) 98, 139–153, https://doi.org/10.1016/j.semcdb.2019.05.022, 2-s2.0-85067914437.
- 4 Yoo S. M. and Jung Y. K., A molecular approach to mitophagy and mitochondrial dynamics, Molecules and Cells. (2018) 41, no. 1, 18–26, https://doi.org/10.14348/molcells.2018.2277, 2-s2.0-85046369217.
- 5 Jin Q., Jiang Y., Fu L., Zheng Y, Ding Y, and Liu Q, Wenxin granule ameliorates hypoxia/reoxygenation-induced oxidative stress in mitochondria via the PKC-δ/NOX2/ROS pathway in H9c2 cells, Oxidative medicine and cellular longevity. (2020) 2020, 3245483, https://doi.org/10.1155/2020/3245483.
- 6 Ventura-Clapier R., Garnier A., and Veksler V., Transcriptional control of mitochondrial biogenesis: the central role of PGC-1, Cardiovascular Research. (2008) 79, no. 2, 208–217, https://doi.org/10.1093/cvr/cvn098, 2-s2.0-46749125376.
- 7 Ago T., Yeh I., Yamamoto M., Schinke-Braun M, Brown J. A, Tian B, and Sadoshima J, Thioredoxin1 upregulates mitochondrial proteins related to oxidative phosphorylation and TCA cycle in the heart, Antioxidants and Redox Signaling. (2006) 8, no. 9-10, 1635–1650, https://doi.org/10.1089/ars.2006.8.1635, 2-s2.0-33750405658.
- 8 Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R. C., and Spiegelman B. M., Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1, Cell. (1999) 98, no. 1, 115–124, https://doi.org/10.1016/s0092-8674(00)80611-x, 2-s2.0-0033538473.
- 9 Scarpulla R. C., Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator, Annals of the New York Academy of Sciences. (2008) 1147, no. 1, 321–334, https://doi.org/10.1196/annals.1427.006, 2-s2.0-57649148823.
- 10 Jornayvaz F. R. and Shulman G. I., Regulation of mitochondrial biogenesis, Essays in Biochemistry. (2010) 47, 69–84, https://doi.org/10.1042/bse0470069, 2-s2.0-79951977334.
- 11 Tian L., Cao W., Yue R., Yuan Y., Guo X., Qin D., Xing J., and Wang X., Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway, Journal of Pharmacological Sciences. (2019) 139, no. 4, 352–360, https://doi.org/10.1016/j.jphs.2019.02.008, 2-s2.0-85063115522.
- 12 Zhang Q., Guo D., and Wang Y., Danqi pill protects against heart failure post-acute myocardial infarction via HIF-1α/PGC-1α mediated glucose metabolism pathway, Frontiers in Pharmacology. (2020) 11, https://doi.org/10.3389/fphar.2020.00458.
- 13 Du Z., Shu Z., Lei W., Li C., Zeng K., Guo X., Zhao M., Tu P., and Jiang Y., Integration of metabonomics and transcriptomics reveals the therapeutic effects and mechanisms of baoyuan decoction for myocardial ischemia, Frontiers in Pharmacology. (2018) 9, https://doi.org/10.3389/fphar.2018.00514, 2-s2.0-85047441696.
- 14 Lu W., Wang Q., Sun X., He H., Wang Q., Wu Y., Liu Y., Wang Y., and Li C., Qishen granule improved cardiac remodeling via balancing M1 and M2 macrophages, Frontiers in Pharmacology. (2019) 10, https://doi.org/10.3389/fphar.2019.01399.
- 15 Jiao S., Tang B., Wang Y., Li C., Zeng Z., Cui L., Zhang X., Shao M., Guo D., and Wang Q., Pro-angiogenic role of danqi pill through activating fatty acids oxidation pathway against coronary artery disease, Frontiers in Pharmacology. (2018) 9, https://doi.org/10.3389/fphar.2018.01414, 2-s2.0-85068471183.
- 16 Li C., Wang J., Wang Q., Zhang Y., Zhang N., Lu L., Wu Y., Zhang Q., Wang W., Wang Y., and Tu P., Qishen granules inhibit myocardial inflammation injury through regulating arachidonic acid metabolism, Scientific Reports. (2016) 6, no. 1, 36949, https://doi.org/10.1038/srep36949, 2-s2.0-84994876973.
- 17 Li C., Wang Y., Qiu Q., Shi T, Wu Y, Han J, Chai X, and Wang W, Qishenyiqi protects ligation-induced left ventricular remodeling by attenuating inflammation and fibrosis via STAT3 and NF-κB signaling pathway, PLoS One. (2014) 9, no. 8, e104255, https://doi.org/10.1371/journal.pone.0104255, 2-s2.0-84905995919.
- 18 Zhang Q., Shi J., Guo D., Wang Q, Yang X, Lu W, Sun X, He H, Li N, Wang Y, Li C, and Wang W, Qishen Granule alleviates endoplasmic reticulum stress-induced myocardial apoptosis through IRE-1-CRYAB pathway in myocardial ischemia, Journal of Ethnopharmacology. (2020) 252, 112573, https://doi.org/10.1016/j.jep.2020.112573.
- 19 Ren W., Gao S., Zhang H., Ren Y, Yu X, Lin W, Guo S, Zhu R, and Wang W, Decomposing the mechanism of qishen granules in the treatment of heart failure by a quantitative pathway analysis method, Molecules. (2018) 23, no. 7, https://doi.org/10.3390/molecules23071829, 2-s2.0-85052025777.
- 20 Zhang J., Liu J., Gao S., Lin W, Gao P, Gao K, Zhang Y, Du K, Yang X, Wang W, Zhu R, and Wang Y, Antiapoptosis and antifibrosis effects of qishen granules on heart failure rats via hippo pathway, BioMed Research International. (2019) 2019, 1642575, https://doi.org/10.1155/2019/1642575.
- 21 Shi L., Shi L., Reid L. H., Jones W. D, Shippy R, Warrington J. A, Baker S. C, Collins P. J, de Longueville F, Kawasaki E. S, Lee K. Y, Luo Y, Sun Y. A, Willey J. C, Setterquist R. A, Fischer G. M, Tong W, Dragan Y. P, Dix D. J, Frueh F. W, Goodsaid F. M, Herman D, Jensen R. V, Johnson C. D, Lobenhofer E. K, Puri R. K, Schrf U, Thierry-Mieg J, Wang C, Wilson M, Wolber P. K, Zhang L, Amur S, Bao W, Barbacioru C. C, Lucas A. B, Bertholet V, Boysen C, Bromley B, Brown D, Brunner A, Canales R, Cao X. M, Cebula T. A, Chen J. J, Cheng J, Chu T. M, Chudin E, Corson J, Corton J. C, Croner L. J, Davies C, Davison T. S, Delenstarr G, Deng X, Dorris D, Eklund A. C, Fan X. H, Fang H, Fulmer-Smentek S, Fuscoe J. C, Gallagher K, Ge W, Guo L, Guo X, Hager J, Haje P. K, Han J, Han T, Harbottle H. C, Harris S. C, Hatchwell E, Hauser C. A, Hester S, Hong H, Hurban P, Jackson S. A, Ji H, Knight C. R, Kuo W. P, LeClerc J. E, Levy S, Li Q. Z, Liu C, Liu Y, Lombardi M. J, Ma Y, Magnuson S. R, Maqsodi B, McDaniel T, Mei N, Myklebost O, Ning B, Novoradovskaya N, Orr M. S, Osborn T. W, Papallo A, Patterson T. A, Perkins R. G, Peters E. H, Peterson R, Philips K. L, Pine P. S, Pusztai L, Qian F, Ren H, Rosen M, Rosenzweig B. A, Samaha R. R, Schena M, Schroth G. P, Shchegrova S, Smith D. D, Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z, Thierry-Mieg D, Thompson K. L, Tikhonova I, Turpaz Y, Vallanat B, Van C, Walker S. J, Wang S. J, Wang Y, Wolfinger R, Wong A, Wu J, Xiao C, Xie Q, Xu J, Yang W, Zhang L, Zhong S, Zong Y, and Slikker W, The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements, Nature Biotechnology. (2006) 24, no. 9, 1151–1161, https://doi.org/10.1038/nbt1239, 2-s2.0-33748491517.
- 22 Liu Y., Ai N., Liao J., and Fan X., Transcriptomics: a sword to cut the Gordian knot of traditional Chinese medicine, Biomarkers in Medicine. (2015) 9, no. 11, 1201–1213, https://doi.org/10.2217/bmm.15.91, 2-s2.0-84947784841.
- 23 Xia K., Wang Q., and Li C., Effect of QSKL on MAPK and RhoA pathways in a rat model of heart failure [J], Evid Based Complement Alternat Med. (2017) 2017, 3903898, https://doi.org/10.1155/2017/3903898, 2-s2.0-85018956479.
- 24 Wagner G. P., Kin K., and Lynch V. J., Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples, Theory in Biosciences. (2012) 131, no. 4, 281–285, https://doi.org/10.1007/s12064-012-0162-3, 2-s2.0-84872033704.
- 25 Lu Z., Xu X., Hu X., Fassett J., Zhu G., Tao Y., Li J., Huang Y., Zhang P., Zhao B., and Chen Y., PGC-1α regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload, Antioxidants and Redox Signaling. (2010) 13, no. 7, 1011–1022, https://doi.org/10.1089/ars.2009.2940, 2-s2.0-77955871829.
- 26 Murphy E. and Steenbergen C., Preconditioning: the mitochondrial connection, Annual Review of Physiology. (2007) 69, no. 1, 51–67, https://doi.org/10.1146/annurev.physiol.69.031905.163645, 2-s2.0-33947373973.
- 27 Tian R., Colucci W. S., Arany Z., Bachschmid M. M., Ballinger S. W., Boudina S., Bruce J. E., Busija D. W., Dikalov S., Dorn G. W., Galis Z. S., Gottlieb R. A., Kelly D. P., Kitsis R. N., Kohr M. J., Levy D., Lewandowski E. D., McClung J. M., Mochly-Rosen D., O’Brien K. D., O’Rourke B., Park J.-Y., Ping P., Sack M. N., Sheu S.-S., Shi Y., Shiva S., Wallace D. C., Weiss R. G., Vernon H. J., Wong R., Longacre L. S., and Shi S., Unlocking the secrets of mitochondria in the cardiovascular system, Circulation. (2019) 140, no. 14, 1205–1216, https://doi.org/10.1161/circulationaha.119.040551.
- 28 Li Y. Q., Jiao Y., and Liu Y. N., PGC-1α protects from myocardial ischaemia-reperfusion injury by regulating mitonuclear communication, Journal of Cellular and Molecular Medicine. (2021) 67.
- 29 Matejíková J., Kucharská J., Pintérová M., Pancza D, and Ravingerová T, Protection against ischemia-induced ventricular arrhythmias and myocardial dysfunction conferred by preconditioning in the rat heart: involvement of mitochondrial K(ATP) channels and reactive oxygen species, Physiological Research. (2009) 58, no. 1, 9–19.
- 30 Bisaccia G., Ricci F., Gallina S., Di Baldassarre A, and Ghinassi B, Mitochondrial dysfunction and heart disease: critical appraisal of an overlooked association, International Journal of Molecular Sciences. (2021) 22, no. 2, https://doi.org/10.3390/ijms22020614.
- 31
Muthuramu I.,
Lox M., and
Jacobs F., Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure, Journal of Visualized Experiments. (2014) 94, https://doi.org/10.3791/52206, 2-s2.0-84917707267.
10.3791/52206 Google Scholar
- 32 Jové M., Salla J., Planavila A., Cabrero A, Michalik L, Wahli W, Laguna J. C, and Vázquez-Carrera M, Impaired expression of NADH dehydrogenase subunit 1 and PPARgamma coactivator-1 in skeletal muscle of ZDF rats: restoration by troglitazone, Journal of Lipid Research. (2004) 45, no. 1, 113–123, https://doi.org/10.1194/jlr.M300208-JLR200, 2-s2.0-0842347859.
- 33 Liu Y., Zhao Y., Tang R., Jiang X., Wang Y., Gu T., Liu Y., Zhao Y., Tang R., Jiang X., Wang Y., and Gu T., Effect of TFAM on ATP content in tachypacing primary cultured cardiomyocytes and atrial fibrillation patients, Molecular Medicine Reports. (2020) 22, no. 6, 5105–5112, https://doi.org/10.3892/mmr.2020.11593.
- 34 Chitra L. and Boopathy R., Altered mitochondrial biogenesis and its fusion gene expression is involved in the high-altitude adaptation of rat lung, Respiratory Physiology & Neurobiology. (2014) 192, 74–84, https://doi.org/10.1016/j.resp.2013.12.007, 2-s2.0-84891473604.
- 35 Ekstrand M. I., Falkenberg M., and Rantanen A., Mitochondrial transcription factor A regulates mtDNA copy number in mammals, Human Molecular Genetics. (2004) 13, no. 9, 935–944, https://doi.org/10.1093/hmg/ddh109, 2-s2.0-2442431673.
- 36 Rius-Pérez S., Torres-Cuevas I., Millán I., and PGC-1α, Inflammation, and oxidative stress: an integrative view in metabolism, Oxidative Medicine and Cellular Longevity. (2020) 2020, 1452696.
- 37 Popov L. D., Mitochondrial biogenesis: an update, Journal of Cellular and Molecular Medicine. (2020) 24, no. 9, 4892–4899, https://doi.org/10.1111/jcmm.15194.
- 38 Fernández-Silva P., Enriquez J. A., and Montoya J., Replication and transcription of mammalian mitochondrial DNA, Experimental Physiology. (2003) 88, no. 1, 41–56.
- 39 Li Y., Feng Y.-F., Liu X.-T., Li Y.-C., Zhu H.-M., Sun M.-R., Li P., Liu B., and Yang H., Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis, Redox Biology. (2021) 38, 101771, https://doi.org/10.1016/j.redox.2020.101771.
- 40 Nanjaiah H. and Vallikannan B., Lutein upregulates the PGC-1α, NRF1, and TFAM expression by AMPK activation and downregulates ROS to maintain mtDNA integrity and mitochondrial biogenesis in hyperglycemic ARPE-19 cells and rat retina, Biotechnology and Applied Biochemistry. (2019) 66, no. 6, 999–1009, https://doi.org/10.1002/bab.1821.
- 41 Panes J. D., Godoy P. A., Silva-Grecchi T., Celis M. T., Ramirez-Molina O., Gavilan J., Muñoz-Montecino C., Castro P. A., Moraga-Cid G., Yévenes G. E., Guzmán L., Salisbury J. L., Trushina E., and Fuentealba J., Changes in PGC-1α/SIRT1 signaling impact on mitochondrial homeostasis in amyloid-beta peptide toxicity model, Frontiers in Pharmacology. (2020) 11, https://doi.org/10.3389/fphar.2020.00709.