Increased Cycling Performance of Li-Ion Batteries by Phosphoric Acid Modified LiNi0.5Mn1.5O4 Cathodes in the Presence of LiBOB
Maheeka Yapa Abeywardana
Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA uri.edu
Search for more papers by this authorNina Laszczynski
Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA uri.edu
Search for more papers by this authorMatthias Kuenzel
Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany
Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany kit.edu
Search for more papers by this authorDominic Bresser
Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany
Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany kit.edu
Search for more papers by this authorStefano Passerini
Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany
Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany kit.edu
Search for more papers by this authorCorresponding Author
Brett Lucht
Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA uri.edu
Search for more papers by this authorMaheeka Yapa Abeywardana
Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA uri.edu
Search for more papers by this authorNina Laszczynski
Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA uri.edu
Search for more papers by this authorMatthias Kuenzel
Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany
Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany kit.edu
Search for more papers by this authorDominic Bresser
Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany
Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany kit.edu
Search for more papers by this authorStefano Passerini
Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany
Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany kit.edu
Search for more papers by this authorCorresponding Author
Brett Lucht
Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA uri.edu
Search for more papers by this authorAbstract
LiNi0.5Mn1.5O4 (LNMO), which has an operating voltage of 4.8 vs Li/Li+ and a theoretical capacity of 147 mAh g−1, is an interesting cathode material for advanced lithium ion batteries. However, electrolyte decomposition at the electrode can gradually decrease the capacity of the battery. In this study, the surface of the LNMO cathode has been modified with phosphoric acid (PA) to improve the capacity of the LNMO/graphite full cell. Modification of LNMO cathodes by PA is confirmed by surface analysis. Additionally, the presence of lithium bis-(oxalato) borate (LiBOB) as an electrolyte additive further enhances the performance of PA modified LNMO/graphite cells. The improved performance of PA modified cathodes and electrolytes containing LiBOB can be attributed to the suppressed Mn and Ni deposition on the anode. Elemental analysis suggests that the Mn and Ni dissolution is significantly reduced compared to unmodified LNMO/graphite cells with standard electrolyte.
Open Research
Data Availability
All the data used to support the findings of this study are included within the article.
References
- 1 Patoux S., Daniel L., Bourbon C., Lignier H., Pagano C., Le Cras F., Jouanneau S., and Martinet S., High voltage spinel oxides for Li-ion batteries: from the material research to the application, Journal of Power Sources. (2009) 189, no. 1, 344–352, https://doi.org/10.1016/j.jpowsour.2008.08.043.
- 2 Dunn B., Kamath H., and Tarascon J. M., Electrical energy storage for the grid: a battery of choices, Science. (2011) 334, no. 6058, 928–935, https://doi.org/10.1126/science.1212741, 2-s2.0-81555207951.
- 3 Armand M. and Tarascon J. M., Building better batteries, Nature. (2008) 451, no. 7179, 652–657, https://doi.org/10.1038/451652a, 2-s2.0-38949102073.
- 4 Axmann P., Gabrielli G., and Wohlfahrt-Mehrens M., Tailoring high-voltage and high-performance LiNi0.5Mn1.5O4 cathode material for high energy lithium-ion batteries, Journal of Power Sources. (2016) 301, 151–159, https://doi.org/10.1016/j.jpowsour.2015.10.010.
- 5 Hong D., Guo Y., Wang H., Zhou J., and Fang H., Mechanism for improving the cycle performance of LiNi0.5Mn1.5O4 by RuO2 surface modification and increasing discharge cut-off potentials, Journal of Materials Chemistry A. (2015) 3, no. 30, 15457–15465, https://doi.org/10.1039/C5TA02255J.
- 6 Ellis B. L., Lee K. T., and Nazar L. F., Positive electrode materials for Li-Ion and Li-batteries, Chemistry of Materials. (2010) 22, no. 3, 691–714, 2-s2.0-76249115189, https://doi.org/10.1021/cm902696j.
- 7 Li W., Song B., and Manthiram A., High-voltage positive electrode materials for lithium-ion batteries, Chemical Society Reviews. (2017) 46, no. 10, 3006–3059, https://doi.org/10.1039/C6CS00875E.
- 8 Kempaiah Devaraju M., Duc Truong Q., Hyodo H., Sasaki Y., and Honma I., Synthesis, characterization and observation of antisite defects in LiNiPO4 nanomaterials, Scientific Reports. (2015) 5, no. 1, article 11041, https://doi.org/10.1038/srep11041.
- 9 Zhang Z., Hu L., Wu H., Weng W., Koh M., Redfern P. C., Curtiss L. A., and Amine K., Fluorinated electrolytes for 5 V lithium-ion battery chemistry, Energy & Environmental Science. (2013) 6, no. 6, 1806–1810, https://doi.org/10.1039/c3ee24414h.
- 10 Xu M., Zhou L., Dong Y., Chen Y., Garsuch A., and Lucht B. L., Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium Bis(oxalato) borate (LiBOB), Journal of The Electrochemical Society. (2013) 160, no. 11, A2005–A2013, https://doi.org/10.1149/2.053311jes, 2-s2.0-84894876500.
- 11 Amine K., Tukamoto H., Yasuda H., and Fujita Y., Preparation and electrochemical investigation of LiMn2 − xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries, Journal of Power Sources. (1997) 68, no. 2, 604–608, https://doi.org/10.1016/S0378-7753(96)02590-6.
- 12 Zhong Q., Bonakdarpour A., Zhang M., Gao Y., and Dahn J. R., Synthesis and electrochemistry of LiNixMn2-xO4, Journal of The Electrochemical Society. (1997) 144, no. 1, 205–213, https://doi.org/10.1149/1.1837386, 2-s2.0-0030828207.
- 13 Lee S. J., Han J.-G., Park I. et al., Effect of lithium bis (oxalato) borate additive on electrochemical performance of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes for lithium-ion batteries, Journal of The Electrochemical Society. (2014) 161, no. 14, A2012–A2019, https://doi.org/10.1149/2.0211414jes.
- 14 Haregewoin A. M., Wotango A. S., and Hwang B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy Environ. Sci. (2016) 9, no. 6, 1955–1988, https://doi.org/10.1039/C6EE00123H.
- 15 Yang L., Ravdel B., and Lucht B. L., Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries, Electrochemical and Solid-State Letters. (2010) 13, no. 8, A95–A97, https://doi.org/10.1149/1.3428515, 2-s2.0-77953577284.
- 16 Von Cresce A. and Xu K., Electrolyte additive in support of 5 v Li ion chemistry, Journal of The Electrochemical Society. (2011) 158, no. 3, A337–A342, 2-s2.0-79551603581, https://doi.org/10.1149/1.3532047.
- 17 Yang L., Markmaitree T., and Lucht B. L., Inorganic additives for passivation of high voltage cathode materials, Journal of Power Sources. (2011) 196, no. 4, 2251–2254, https://doi.org/10.1016/j.jpowsour.2010.09.093.
- 18 Xu K., Electrolytes and interphases in Li-ion batteries and beyond, Chemical Reviews. (2014) 114, no. 23, 11503–11618, 2-s2.0-84916613973, https://doi.org/10.1021/cr500003w.
- 19 Aravindan V., Gnanaraj J., Madhavi S., and Liu H., Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries, Chemistry - A European Journal. (2011) 17, no. 51, 14326–14346, https://doi.org/10.1002/chem.201101486.
- 20 Laskar M. R., Jackson D. H. K., Guan Y., Xu S., Fang S., Dreibelbis M., Mahanthappa M. K., Morgan D., Hamers R. J., and Kuech T. F., Atomic layer deposition of Al2O3–Ga2O3 alloy coatings for Li[Ni0.5Mn0.3Co0.2] O2 cathode to improve rate performance in Li-Ion battery, ACS Applied Materials & Interfaces. (2016) 8, no. 16, 10572–10580, https://doi.org/10.1021/acsami.5b11878.
- 21 Liu J. and Manthiram A., Improved electrochemical performance of the 5 V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification, Journal of The Electrochemical Society. (2009) 156, no. 1, A66–A72, https://doi.org/10.1149/1.3028318.
- 22 Loeffler N., Kim G. T., Mueller F., Diemant T., Kim J. K., Behm R. J., and Passerini S., In situ coating of li [Ni0.33Mn0.33Co0.33] O2 particles to enable aqueous electrode processing, ChemSusChem. (2016) 9, no. 10, 1112–1117.
- 23 Kazzazi A., Bresser D., Birrozzi A., Von Zamory J., Hekmatfar M., and Passerini S., Comparative analysis of aqueous binders for high-energy li-rich NMC as a Lithium-Ion cathode and the impact of adding phosphoric acid, ACS Applied Materials & Interfaces. (2018) 10, no. 20, 17214–17222, https://doi.org/10.1021/acsami.8b03657, 2-s2.0-85046538525.
- 24 Kuenzel M., Bresser D., Diemant T., Carvalho D. V., Kim G. T., Behm R. J., and Passerini S., Complementary strategies toward the aqueous processing of high-voltage LiNi0.5Mn1.5O4 lithium-ion cathodes, ChemSusChem. (2018) 11, no. 3, 562–573, https://doi.org/10.1002/cssc.201702021.
- 25 Arumugam R. S., Ma L., Li J., Xia X., Paulsen J. M., and Dahn J. R., Special synergy between electrolyte additives and positive electrode surface coating to enhance the performance of li[Ni0.6Mn0.2Co0.2] O2/graphite cells, Journal of The Electrochemical Society. (2016) 163, no. 13, A2531–A2538, https://doi.org/10.1149/2.0171613jes.
- 26 Xu K., Deveney B., Nechev K., Lam Y., and Jow T. R., Evaluating liBOB/lactone electrolytes in large-format lithium-ion cells based on nickelate and iron phosphate, Journal of The Electrochemical Society. (2008) 155, no. 12, A959–A964, https://doi.org/10.1149/1.2990708, 2-s2.0-54949100457.
- 27 Aurbach D. and Zaban A., Impedance spectroscopy of lithium electrodes: part 1. general behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency, Journal of Electroanalytical Chemistry. (1993) 348, no. 1-2, 155–179, https://doi.org/10.1016/0022-0728(93)80129-6.
- 28 Li W. and Lucht B. L., Lithium-ion batteries: thermal reactions of electrolyte with the surface of metal oxide cathode particles, Journal of The Electrochemical Society. (2006) 153, no. 8, A1617–A1625, https://doi.org/10.1149/1.2210588, 2-s2.0-33745490053.
- 29 Nie M., Chalasani D., Abraham D. P., Chen Y., Bose A., and Lucht B. L., Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy, The Journal of Physical Chemistry C. (2013) 117, no. 3, 1257–1267, 2-s2.0-84872846392, https://doi.org/10.1021/jp3118055.
- 30 Lu D., Xu M., Zhou L., Garsuch A., and Lucht B. L., Failure mechanism of graphite/LiNi0. 5Mn1. 5O4 cells at high voltage and elevated temperature, Journal of The Electrochemical Society. (2013) 160, no. 5, A3138–A3143.