Oxygen Regulates Human Pluripotent Stem Cell Metabolic Flux
Jarmon G. Lees
School of BioSciences, The University of Melbourne, 11 Royal Parade, Parkville, 3010 VIC, Australia unimelb.edu.au
Search for more papers by this authorTimothy S. Cliff
Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA uga.edu
Centre for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA uga.edu
Search for more papers by this authorAmanda Gammilonghi
Nanobiotechnology Research Laboratory, RMIT University, Melbourne, VIC 3010, Australia rmit.edu.au
Search for more papers by this authorJames G. Ryall
Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia unimelb.edu.au
Search for more papers by this authorStephen Dalton
Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA uga.edu
Centre for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA uga.edu
Search for more papers by this authorCorresponding Author
David K. Gardner
School of BioSciences, The University of Melbourne, 11 Royal Parade, Parkville, 3010 VIC, Australia unimelb.edu.au
Search for more papers by this authorAlexandra J. Harvey
School of BioSciences, The University of Melbourne, 11 Royal Parade, Parkville, 3010 VIC, Australia unimelb.edu.au
Search for more papers by this authorJarmon G. Lees
School of BioSciences, The University of Melbourne, 11 Royal Parade, Parkville, 3010 VIC, Australia unimelb.edu.au
Search for more papers by this authorTimothy S. Cliff
Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA uga.edu
Centre for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA uga.edu
Search for more papers by this authorAmanda Gammilonghi
Nanobiotechnology Research Laboratory, RMIT University, Melbourne, VIC 3010, Australia rmit.edu.au
Search for more papers by this authorJames G. Ryall
Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia unimelb.edu.au
Search for more papers by this authorStephen Dalton
Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA uga.edu
Centre for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA uga.edu
Search for more papers by this authorCorresponding Author
David K. Gardner
School of BioSciences, The University of Melbourne, 11 Royal Parade, Parkville, 3010 VIC, Australia unimelb.edu.au
Search for more papers by this authorAlexandra J. Harvey
School of BioSciences, The University of Melbourne, 11 Royal Parade, Parkville, 3010 VIC, Australia unimelb.edu.au
Search for more papers by this authorAbstract
Metabolism has been shown to alter cell fate in human pluripotent stem cells (hPSC). However, current understanding is almost exclusively based on work performed at 20% oxygen (air), with very few studies reporting on hPSC at physiological oxygen (5%). In this study, we integrated metabolic, transcriptomic, and epigenetic data to elucidate the impact of oxygen on hPSC. Using 13C-glucose labeling, we show that 5% oxygen increased the intracellular levels of glycolytic intermediates, glycogen, and the antioxidant response in hPSC. In contrast, 20% oxygen increased metabolite flux through the TCA cycle, activity of mitochondria, and ATP production. Acetylation of H3K9 and H3K27 was elevated at 5% oxygen while H3K27 trimethylation was decreased, conforming to a more open chromatin structure. RNA-seq analysis of 5% oxygen hPSC also indicated increases in glycolysis, lysine demethylases, and glucose-derived carbon metabolism, while increased methyltransferase and cell cycle activity was indicated at 20% oxygen. Our findings show that oxygen drives metabolite flux and specifies carbon fate in hPSC and, although the mechanism remains to be elucidated, oxygen was shown to alter methyltransferase and demethylase activity and the global epigenetic landscape.
Open Research
Data Availability
The Gene Expression Omnibus accession number for the RNA-seq dataset reported in this paper is GSE117966.
Supporting Information
Filename | Description |
---|---|
sci8195614-sup-0001-f1.pdfPDF document, 679.8 KB | Supplementary 1 Supplementary Figure 1: carbon tracing through metabolic pathways. Metabolite pathways organized into functional groups contributing to the production of glycogen, glutathione, pyruvate, alanine, acetate, and lactate. Figures show the absolute levels of intracellular glucose derivatives in MEL2 hPSC at 0.5, 1, 2, and 4 hours when cultured under 5% and 20% oxygen. Lactate is plotted on the right y-axes. Supplementary Figure 2: RNA-seq volcano plots of the hPSC response to oxygen. Plots from left to right and top to bottom are the MEL1 hPSC transcriptional response to 5% and 20% oxygen and the transcriptional differences between hPSC lines at 5% oxygen, at 20% oxygen, and when the oxygen treatments are pooled. Red genes indicate a fold change value greater than 2 and an adjusted p value (Benjamini FDR) less than 0.05. Supplementary Figure 3: hPSC transcriptional response to 5% and 20% oxygen. (A) Pluripotency markers are generally not impacted by oxygen. (B) HIF-1 target genes show a strong transcriptional activation at 5% oxygen. Only statistics with a Benjamini score of <0.05 (p-adj) are shown. All assays performed in biological triplicate. ∗∗∗∗p < 0.0001, ∗∗∗p < 0.001, ∗∗p < 0.01, and ∗p < 0.05 for Benjamini scores. Supplementary Figure 4: Enriched GO and KEGG pathways due to oxygen. MEL1 and MEL2 hPSC GO and KEGG pathways upregulated after 5% and 20% oxygen culture. The contributing numbers of gene hits for each pathway are given with the ends of each bar. Only terms with a Benjamini score of <0.05 (p-adj) are shown. All assays performed in biological triplicate. ∗∗∗∗p < 0.0001, ∗∗∗p < 0.001, ∗∗p < 0.01, and ∗p < 0.05 for Benjamini scores. Supplementary Figure 5: RNA-seq minimum-order networks comparing hPSC lines. (A) Differentially expressed genes in hPSC lines (MEL1, MEL2) cultured at 5% oxygen were connected based on known protein:protein interactions (https://www.innatedb.ca/). Red nodes are upregulated in MEL1 hPSC; green nodes are upregulated in MEL2 hPSC. Grey nodes have known interactions with the seeds but were not regulated. Green/red intensity indicates the degree of fold change as indicated in the figure. (B) 5% oxygen cultured KEGG pathways upregulated in MEL1 and MEL2 hPSC based on the minimum-order network in Supplementary Figure 2A. (C) 20% oxygen minimum-order, protein:protein interaction network. (D) 20% oxygen KEGG pathways upregulated in MEL1 and MEL2 hPSC based on the minimum-order network in Supplementary Figure 2C. Supplementary Figure 6: methyltransferases and lysine demethylases synergistically reduce methylation at 5% oxygen. (A) Extracellular and intracellular levels of glycolytic metabolites and glycolytic enzymes in hPSC. (B) Intracellular levels of metabolites and enzymes in and related to the serine/glycine biosynthesis pathway. (C) Intercellular metabolite levels of transsulphuration pathway metabolites. (D) Expression of metabolites and transcripts for enzymes, in the folate cycle. (E) Expression of metabolites and transcripts for enzymes, in the methionine cycle. (F) Level of H3K27 trimethylation and transcripts for lysine demethylases and methyltransferases. All contributing assays performed in a minimum of biological triplicate. Bolded text indicates a significant increase (green) or decrease (red) in hPSC metabolite/transcript/methylation level at 5% relative to 20% oxygen culture. Bolded black text indicates a nonsignificant result for an assessed parameter. Unbolded text indicates a parameter that was not assessed. Supplementary Table 2: related to experimental procedures. Human PCR primers for the serine/glycine biosynthesis pathway. |
sci8195614-sup-0002-f2.xlsxExcel 2007 spreadsheet , 11 MB | Supplementary 2 Supplementary Table 1: an attached excel file containing qPCR data relating to Supplementary Figure 5 and the 4 comparisons performed on RNA-seq data comparing MEL1 hPSC at 5% and 20% oxygen, MEL2 hPSC at 5% and 20% oxygen, MEL1 and MEL2 hPSC at 5% oxygen, and MEL1 and MEL2 hPSC at 20% oxygen. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Fischer B. and Bavister B. D., Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits, Reproduction. (1993) 99, no. 2, 673–679, https://doi.org/10.1530/jrf.0.0990673, 2-s2.0-0027756119.
- 2 Mitchell J. A. and Yochim J. M., Measurement of intrauterine oxygen tension in the rat and its regulation by ovarian steroid hormones, Endocrinology. (1968) 83, no. 4, 691–700, https://doi.org/10.1210/endo-83-4-691, 2-s2.0-0014348377, 5685959.
- 3 Rodesch F., Simon P., Donner C., and Jauniaux E., Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy, Obstetrics & Gynecology. (1992) 80, no. 2, 283–285, 1635745.
- 4 Clark A. R., Stokes Y. M., Lane M., and Thompson J. G., Mathematical modelling of oxygen concentration in bovine and murine cumulus–oocyte complexes, Reproduction. (2006) 131, no. 6, 999–1006, https://doi.org/10.1530/rep.1.00974, 2-s2.0-33745203527, 16735539.
- 5 Harvey A. J., The role of oxygen in ruminant preimplantation embryo development and metabolism, Animal Reproduction Science. (2007) 98, no. 1-2, 113–128, https://doi.org/10.1016/j.anireprosci.2006.10.008, 2-s2.0-33846820500, 17158002.
- 6 Gardner D. K., The impact of physiological oxygen during culture, and vitrification for cryopreservation, on the outcome of extended culture in human IVF, Reproductive BioMedicine Online. (2016) 32, no. 2, 137–141, https://doi.org/10.1016/j.rbmo.2015.11.008, 2-s2.0-84949675152, 26687905.
- 7 Christianson M. S., Zhao Y., Shoham G., Granot I., Safran A., Khafagy A., Leong M., and Shoham Z., Embryo catheter loading and embryo culture techniques: results of a worldwide web-based survey, Journal of Assisted Reproduction and Genetics. (2014) 31, no. 8, 1029–1036, https://doi.org/10.1007/s10815-014-0250-z, 2-s2.0-84906312612, 24913025.
- 8 Zhou W., Choi M., Margineantu D., Margaretha L., Hesson J., Cavanaugh C., Blau C. A., Horwitz M. S., Hockenbery D., Ware C., and Ruohola-Baker H., HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition, The EMBO Journal. (2012) 31, no. 9, 2103–2116, https://doi.org/10.1038/emboj.2012.71, 2-s2.0-84860531487, 22446391.
- 9 Varum S., Rodrigues A. S., Moura M. B., Momcilovic O., Easley C. A., Ramalho-Santos J., van Houten B., and Schatten G., Energy metabolism in human pluripotent stem cells and their differentiated counterparts, PLoS One. (2011) 6, no. 6, article e20914, https://doi.org/10.1371/journal.pone.0020914, 2-s2.0-79959221064, 21698063.
- 10 Zhang J., Khvorostov I., Hong J. S., Oktay Y., Vergnes L., Nuebel E., Wahjudi P. N., Setoguchi K., Wang G., Do A., Jung H. J., McCaffery J. M., Kurland I. J., Reue K., Lee W. N. P., Koehler C. M., and Teitell M. A., UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells, The EMBO Journal. (2011) 30, no. 24, 4860–4873, https://doi.org/10.1038/emboj.2011.401, 2-s2.0-83455235489, 22085932.
- 11 Harvey A. J., Rathjen J., Yu L. J., and Gardner D. K., Oxygen modulates human embryonic stem cell metabolism in the absence of changes in self-renewal, Reproduction, Fertility and Development. (2016) 28, no. 4, 446–458, https://doi.org/10.1071/RD14013, 2-s2.0-84959347944.
- 12 Cho Y. M., Kwon S., Pak Y. K., Seol H. W., Choi Y. M., Park D. J., Park K. S., and Lee H. K., Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells, Biochemical and Biophysical Research Communications. (2006) 348, no. 4, 1472–1478, https://doi.org/10.1016/j.bbrc.2006.08.020, 2-s2.0-33747875396, 16920071.
- 13 Forristal C. E., Christensen D. R., Chinnery F. E., Petruzzelli R., Parry K. L., Sanchez-Elsner T., and Houghton F. D., Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells, PLoS One. (2013) 8, no. 5, article e62507, https://doi.org/10.1371/journal.pone.0062507, 2-s2.0-84877090090, 23671606.
- 14 Lees J. G., Rathjen J., Sheedy J. R., Gardner D. K., and Harvey A. J., Distinct profiles of human embryonic stem cell metabolism and mitochondria identified by oxygen, Reproduction. (2015) 150, no. 4, 367–382, https://doi.org/10.1530/REP-14-0633, 2-s2.0-84947236306, 26159831.
- 15 Westfall S. D., Sachdev S., Das P., Hearne L. B., Hannink M., Roberts R. M., and Ezashi T., Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells, Stem Cells and Development. (2008) 17, no. 5, 869–882, https://doi.org/10.1089/scd.2007.0240, 2-s2.0-58149154747, 18811242.
- 16 Piruat J. I. and Lopez-Barneo J., Oxygen tension regulates mitochondrial DNA-encoded complex I gene expression, Journal of Biological Chemistry. (2005) 280, no. 52, 42676–42684, https://doi.org/10.1074/jbc.M507044200, 2-s2.0-30044447187, 16257962.
- 17 Moussaieff A., Rouleau M., Kitsberg D., Cohen M., Levy G., Barasch D., Nemirovski A., Shen-Orr S., Laevsky I., Amit M., Bomze D., Elena-Herrmann B., Scherf T., Nissim-Rafinia M., Kempa S., Itskovitz-Eldor J., Meshorer E., Aberdam D., and Nahmias Y., Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells, Cell Metabolism. (2015) 21, no. 3, 392–402, https://doi.org/10.1016/j.cmet.2015.02.002, 2-s2.0-84924369505, 25738455.
- 18 Petruzzelli R., Christensen D. R., Parry K. L., Sanchez-Elsner T., and Houghton F. D., HIF-2α regulates NANOG expression in human embryonic stem cells following hypoxia and reoxygenation through the interaction with an Oct-Sox Cis regulatory element, PLoS One. (2014) 9, no. 10, article e108309, https://doi.org/10.1371/journal.pone.0108309, 2-s2.0-84907546579, 25271810.
- 19 Carey B. W., Finley L. W. S., Cross J. R., Allis C. D., and Thompson C. B., Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells, Nature. (2015) 518, no. 7539, 413–416, https://doi.org/10.1038/nature13981, 2-s2.0-84925503908, 25487152.
- 20 Harvey A. J., Rathjen J., and Gardner D. K., Metaboloepigenetic regulation of pluripotent stem cells, Stem Cells International. (2016) 2016, 15, 1816525, https://doi.org/10.1155/2016/1816525, 2-s2.0-84956893044.
- 21 Lees J. G., Gardner D. K., and Harvey A. J., Pluripotent stem cell metabolism and mitochondria: beyond ATP, Stem Cells International. (2017) 2017, 17, 2874283, https://doi.org/10.1155/2017/2874283, 2-s2.0-85027170150.
- 22 Varum S., Momčilović O., Castro C., Ben-Yehudah A., Ramalho-Santos J., and Navara C. S., Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain, Stem Cell Research. (2009) 3, no. 2-3, 142–156, https://doi.org/10.1016/j.scr.2009.07.002, 2-s2.0-70349860263, 19716358.
- 23 Gu W., Gaeta X., Sahakyan A., Chan A. B., Hong C. S., Kim R., Braas D., Plath K., Lowry W. E., and Christofk H. R., Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state, Cell Stem Cell. (2016) 19, no. 4, 476–490, https://doi.org/10.1016/j.stem.2016.08.008, 2-s2.0-84992406226, 27618217.
- 24 Zhang J., Nuebel E., Daley G. Q., Koehler C. M., and Teitell M. A., Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal, Cell Stem Cell. (2012) 11, no. 5, 589–595, https://doi.org/10.1016/j.stem.2012.10.005, 2-s2.0-84868351585, 23122286.
- 25 Mandal S., Lindgren A. G., Srivastava A. S., Clark A. T., and Banerjee U., Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells, Stem Cells. (2011) 29, no. 3, 486–495, https://doi.org/10.1002/stem.590, 2-s2.0-79953000879, 21425411.
- 26 Lambert A. J. and Brand M. D., Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane, Biochemical Journal. (2004) 382, no. 2, 511–517, https://doi.org/10.1042/BJ20040485, 2-s2.0-4043090717, 15175007.
- 27 Sathananthan A. H. and Trounson A. O., Mitochondrial morphology during preimplantational human embryogenesis, Human Reproduction. (2000) 15, no. Supplement 2, 148–159, https://doi.org/10.1093/humrep/15.suppl_2.148, 2-s2.0-0033653708.
- 28 Whitworth D. J., Frith J. E., Frith T. J. R., Ovchinnikov D. A., Cooper-White J. J., and Wolvetang E. J., Derivation of mesenchymal stromal cells from canine induced pluripotent stem cells by inhibition of the TGFβ/activin signaling pathway, Stem Cells and Development. (2014) 23, no. 24, 3021–3033, https://doi.org/10.1089/scd.2013.0634, 2-s2.0-84916898863, 25055193.
- 29 Cliff T. S., Wu T., Boward B. R., Yin A., Yin H., Glushka J. N., Prestegaard J. H., and Dalton S., MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux, Cell Stem Cell. (2017) 21, no. 4, 502–516.e9, https://doi.org/10.1016/j.stem.2017.08.018, 2-s2.0-85030688338, 28965765.
- 30 Lees J. G., Gardner D. K., and Harvey A. J., Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells, Development. (2018) 145, no. 20, https://doi.org/10.1242/dev.168997, 2-s2.0-85055214750, 30266828.
- 31 Waypa G. B., Marks J. D., Guzy R., Mungai P. T., Schriewer J., Dokic D., and Schumacker P. T., Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells, Circulation Research. (2010) 106, no. 3, 526–535, https://doi.org/10.1161/CIRCRESAHA.109.206334, 2-s2.0-77649112162, 20019331.
- 32 Shiraki N., Shiraki Y., Tsuyama T., Obata F., Miura M., Nagae G., Aburatani H., Kume K., Endo F., and Kume S., Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells, Cell Metabolism. (2014) 19, no. 5, 780–794, https://doi.org/10.1016/j.cmet.2014.03.017, 2-s2.0-84900332195, 24746804.
- 33 Xiao L., Yuan X., and Sharkis S. J., Activin a maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells, Stem Cells. (2006) 24, no. 6, 1476–1486, https://doi.org/10.1634/stemcells.2005-0299, 2-s2.0-33747614295, 16456129.
- 34 Prasad S. M., Czepiel M., Cetinkaya C., Smigielska K., Weli S. C., Lysdahl H., Gabrielsen A., Petersen K., Ehlers N., Fink T., Minger S. L., and Zachar V., Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation, Cell Proliferation. (2009) 42, no. 1, 63–74, https://doi.org/10.1111/j.1365-2184.2008.00571.x, 2-s2.0-58449086474, 19143764.
- 35 Forsyth N. R., Musio A., Vezzoni P., Simpson A. H. R. W., Noble B. S., and McWhir J., Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities, Cloning and Stem Cells. (2006) 8, no. 1, 16–23, https://doi.org/10.1089/clo.2006.8.16, 2-s2.0-33645766052, 16571074.
- 36 Ezashi T., Das P., and Roberts R. M., Low O2 tensions and the prevention of differentiation of hES cells, Proceedings of the National Academy of Sciences of the United States of America. (2005) 102, no. 13, 4783–4788, https://doi.org/10.1073/pnas.0501283102, 2-s2.0-16344380951, 15772165.
- 37 Acampora D., Omodei D., Petrosino G., Garofalo A., Savarese M., Nigro V., di Giovannantonio L. G., Mercadante V., and Simeone A., Loss of the Otx2-binding site in the Nanog promoter affects the integrity of embryonic stem cell subtypes and specification of inner cell mass-derived epiblast, Cell Reports. (2016) 15, no. 12, 2651–2664, https://doi.org/10.1016/j.celrep.2016.05.041, 2-s2.0-84975113580, 27292645.
- 38 Xia J., Gill E. E., and Hancock R. E. W., NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data, Nature Protocols. (2015) 10, no. 6, 823–844, https://doi.org/10.1038/nprot.2015.052, 2-s2.0-84930062965, 25950236.
- 39 Juan A. H., Wang S., Ko K. D., Zare H., Tsai P. F., Feng X., Vivanco K. O., Ascoli A. M., Gutierrez-Cruz G., Krebs J., Sidoli S., Knight A. L., Pedersen R. A., Garcia B. A., Casellas R., Zou J., and Sartorelli V., Roles of H3K27me2 and H3K27me3 examined during fate specification of embryonic stem cells, Cell Reports. (2016) 17, no. 5, 1369–1382, https://doi.org/10.1016/j.celrep.2016.09.087, 2-s2.0-84994750973, 27783950.
- 40 Zhao C., Wu H., Qimuge N., Pang W., Li X., Chu G., and Yang G., MAT2A promotes porcine adipogenesis by mediating H3K27me3 at Wnt10b locus and repressing Wnt/β-catenin signaling, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. (2018) 1863, no. 2, 132–142, https://doi.org/10.1016/j.bbalip.2017.11.001, 2-s2.0-85034430410, 29133280.
- 41 Shyh-Chang N., Locasale J. W., Lyssiotis C. A., Zheng Y., Teo R. Y., Ratanasirintrawoot S., Zhang J., onder T., Unternaehrer J. J., Zhu H., Asara J. M., Daley G. Q., and Cantley L. C., Influence of threonine metabolism on S-adenosylmethionine and histone methylation, Science. (2013) 339, no. 6116, 222–226, https://doi.org/10.1126/science.1226603, 2-s2.0-84872160110, 23118012.
- 42 Choudhry H. and Harris A. L., Advances in hypoxia-inducible factor biology, Cell Metabolism. (2018) 27, no. 2, 281–298, https://doi.org/10.1016/j.cmet.2017.10.005, 2-s2.0-85033384741, 29129785.
- 43 Lee H.-Y., Choi K., Oh H., Park Y. K., and Park H., HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions, Molecules and Cells. (2014) 37, no. 1, 43–50, https://doi.org/10.14348/molcells.2014.2250, 2-s2.0-84901424976, 24552709.
- 44 Bell E. L., Klimova T. A., Eisenbart J., Moraes C. T., Murphy M. P., Budinger G. R. S., and Chandel N. S., The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production, The Journal of Cell Biology. (2007) 177, no. 6, 1029–1036, https://doi.org/10.1083/jcb.200609074, 2-s2.0-34250745912, 17562787.
- 45 Hitchler M. J. and Domann F. E., Metabolic defects provide a spark for the epigenetic switch in cancer, Free Radical Biology & Medicine. (2009) 47, no. 2, 115–127, https://doi.org/10.1016/j.freeradbiomed.2009.04.010, 2-s2.0-67349240804, 19362589.
- 46 Valinluck V. and Sowers L. C., Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1, Cancer Research. (2007) 67, no. 3, 946–950, https://doi.org/10.1158/0008-5472.CAN-06-3123, 2-s2.0-33847055935, 17283125.
- 47 Lim S.-O., Gu J. M., Kim M. S., Kim H. S., Park Y. N., Park C. K., Cho J. W., Park Y. M., and Jung G., Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter, Gastroenterology. (2008) 135, no. 6, 2128–2140.e8, https://doi.org/10.1053/j.gastro.2008.07.027, 2-s2.0-57249103576, 18801366.
- 48 Moussaieff A., Kogan N. M., and Aberdam D., Concise review: energy metabolites: key mediators of the epigenetic state of pluripotency, Stem Cells. (2015) 33, no. 8, 2374–2380, https://doi.org/10.1002/stem.2041, 2-s2.0-84937632888, 25873344.
- 49 Donohoe D. R. and Bultman S. J., Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression, Journal of Cellular Physiology. (2012) 227, no. 9, 3169–3177, https://doi.org/10.1002/jcp.24054, 2-s2.0-84862060628, 22261928.
- 50 Comerford S. A., Huang Z., du X., Wang Y., Cai L., Witkiewicz A. K., Walters H., Tantawy M. N., Fu A., Manning H. C., Horton J. D., Hammer R. E., McKnight S. L., and Tu B. P., Acetate dependence of tumors, Cell. (2014) 159, no. 7, 1591–1602, https://doi.org/10.1016/j.cell.2014.11.020, 2-s2.0-84919936304, 25525877.
- 51 Wellen K. E., Hatzivassiliou G., Sachdeva U. M., Bui T. V., Cross J. R., and Thompson C. B., ATP-citrate lyase links cellular metabolism to histone acetylation, Science. (2009) 324, no. 5930, 1076–1080, https://doi.org/10.1126/science.1164097, 2-s2.0-66249105703, 19461003.
- 52 Ryall J. G., Dell’Orso S., Derfoul A., Juan A., Zare H., Feng X., Clermont D., Koulnis M., Gutierrez-Cruz G., Fulco M., and Sartorelli V., The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells, Cell Stem Cell. (2015) 16, no. 2, 171–183, https://doi.org/10.1016/j.stem.2014.12.004, 2-s2.0-84924857323, 25600643.
- 53 Skiles W. M., Kester A., Pryor J. H., Westhusin M. E., Golding M. C., and Long C. R., Oxygen-induced alterations in the expression of chromatin modifying enzymes and the transcriptional regulation of imprinted genes, Gene Expression Patterns. (2018) 28, 1–11, https://doi.org/10.1016/j.gep.2018.01.001, 2-s2.0-85041607608, 29339137.
- 54 Li W., Goossens K., van Poucke M., Forier K., Braeckmans K., van Soom A., and Peelman L. J., High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression, Reproduction, Fertility and Development. (2016) 28, no. 7, 948–959, https://doi.org/10.1071/RD14133, 2-s2.0-84983465168.
- 55 Underwood J. M., Imbalzano K. M., Weaver V. M., Fischer A. H., Imbalzano A. N., and Nickerson J. A., The ultrastructure of MCF-10A acini, Journal of Cellular Physiology. (2006) 208, no. 1, 141–148, https://doi.org/10.1002/jcp.20639, 2-s2.0-33744911105, 16607610.
- 56 Ulrich E. L., Akutsu H., Doreleijers J. F., Harano Y., Ioannidis Y. E., Lin J., Livny M., Mading S., Maziuk D., Miller Z., Nakatani E., Schulte C. F., Tolmie D. E., Kent Wenger R., Yao H., and Markley J. L., BioMagResBank, Nucleic Acids Research. (2007) 36, D402–D408, https://doi.org/10.1093/nar/gkm957, 2-s2.0-38549138986, 17984079.
- 57 Wishart D. S., Tzur D., Knox C., Eisner R., Guo A. C., Young N., Cheng D., Jewell K., Arndt D., Sawhney S., Fung C., Nikolai L., Lewis M., Coutouly M. A., Forsythe I., Tang P., Shrivastava S., Jeroncic K., Stothard P., Amegbey G., Block D., Hau D. D., Wagner J., Miniaci J., Clements M., Gebremedhin M., Guo N., Zhang Y., Duggan G. E., MacInnis G. D., Weljie A. M., Dowlatabadi R., Bamforth F., Clive D., Greiner R., Li L., Marrie T., Sykes B. D., Vogel H. J., and Querengesser L., HMDB: the human metabolome database, Nucleic Acids Research. (2007) 35, D521–D526, https://doi.org/10.1093/nar/gkl923, 2-s2.0-33846088138, 17202168.
- 58 McCloy R. A., Rogers S., Caldon C. E., Lorca T., Castro A., and Burgess A., Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events, Cell Cycle. (2014) 13, no. 9, 1400–1412, https://doi.org/10.4161/cc.28401, 2-s2.0-84899714028, 24626186.
- 59 Afgan E., Baker D., van den Beek M., Blankenberg D., Bouvier D., Čech M., Chilton J., Clements D., Coraor N., Eberhard C., Grüning B., Guerler A., Hillman-Jackson J., von Kuster G., Rasche E., Soranzo N., Turaga N., Taylor J., Nekrutenko A., and Goecks J., The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update, Nucleic Acids Research. (2016) 44, no. W1, W3–W10, https://doi.org/10.1093/nar/gkw343, 2-s2.0-84973094812, 27137889.