Sagittal Craniosynostosis with Uncommon Anatomical Pathologies in a 56-Year-Old Male Cadaver
Andrey Frolov
Center for Anatomical Science and Education, Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA slu.edu
Search for more papers by this authorCraig Lawson
Center for Anatomical Science and Education, Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA slu.edu
Search for more papers by this authorJoshua Olatunde
Center for Anatomical Science and Education, Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA slu.edu
Search for more papers by this authorJames T. Goodrich
Departments of Neurological Surgery, Pediatrics, Plastic and Reconstructive Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA montefiore.org
Search for more papers by this authorCorresponding Author
John R. Martin III
Center for Anatomical Science and Education, Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA slu.edu
Search for more papers by this authorAndrey Frolov
Center for Anatomical Science and Education, Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA slu.edu
Search for more papers by this authorCraig Lawson
Center for Anatomical Science and Education, Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA slu.edu
Search for more papers by this authorJoshua Olatunde
Center for Anatomical Science and Education, Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA slu.edu
Search for more papers by this authorJames T. Goodrich
Departments of Neurological Surgery, Pediatrics, Plastic and Reconstructive Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA montefiore.org
Search for more papers by this authorCorresponding Author
John R. Martin III
Center for Anatomical Science and Education, Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA slu.edu
Search for more papers by this authorAbstract
Sagittal craniosynostosis (CS) is a pathologic condition that results in premature fusion of the sagittal suture, restricting the transverse growth of the skull leading in some cases to elevated intracranial pressure and neurodevelopmental delay. There is still much to be learned about the etiology of CS. Here, we report a case of 56-year-old male cadaver that we describe as sagittal CS with torus palatinus being an additional anomaly. The craniotomy was unsuccessful (cephalic index, CI = 56) and resulted in abnormal vertical outgrowth of the craniotomized bone strip. The histological analysis of the latter revealed atypical, noncompensatory massive bone overproduction. Exome sequencing of DNA extracted from the cadaveric tissue specimen performed on the Next Generation Sequencing (NGS) platform yielded 81 genetic variants identified as pathologic. Nine of those variants could be directly linked to CS with five of them targeting RhoA GTPase signaling, with a potential to make it sustained in nature. The latter could trigger upregulated calvarial osteogenesis leading to premature suture fusion, skull bone thickening, and craniotomized bone strip outgrowth observed in the present case.
Open Research
Data Availability
The datasets and materials used and/or analyzed during the current study are presented in the main paper and additional files.
Supporting Information
Filename | Description |
---|---|
crip8034021-sup-0001-f1.pdfPDF document, 457.6 KB | Supplementary Materials Supplementary materials includes a description of Methods used in the study. Figure S1: craniectomy of the scaphocephalic cadaveric head. Table S1: complete list of deleterious (pathologic) genetic variants associated with the current case of sagittal CS. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Hukki J., Saarinen P., and Kangasniemi M., Single suture craniosynostosis: diagnosis and imaging, Frontiers of Oral Biology. (2008) 12, 79–90, https://doi.org/10.1159/000115033, 2-s2.0-45849109976.
- 2 Morris L. M., Nonsyndromic Craniosynostosis and Deformational Head Shape Disorders, Facial Plastic Surgery Clinics of North America. (2016) 24, no. 4, 517–530, https://doi.org/10.1016/j.fsc.2016.06.007, 2-s2.0-84994851681.
- 3 Lattanzi W., Barba Marta, Di Pietro Lorena, and Boyadjiev S. A., Genetic advances in craniosynostosis, American Journal of Medical Genetics Part A. (2017) 173, no. 5, 1406–1429, https://doi.org/10.1002/ajmg.a.38159, 2-s2.0-85011966171.
- 4 Aleck K., Craniosynostosis syndromes in the genomic era, Seminars in Pediatric Neurology. (2004) 11, no. 4, 256–261, https://doi.org/10.1016/j.spen.2004.10.005, 2-s2.0-15044351458.
- 5 Mahinda H. A. M. and Murty O. P., Variability in thickness of human skull bones and sternum - an autopsy experience, Journal of Forensic Medicine and Toxicology. (2009) 26, no. 2, 26–31.
- 6 Frolov A., Tan Y., Rana M., and Martin J. R. III., A rare case of human diphallia associated with hypospadias, Case Reports in Urology. (2018) 2018, 6, https://doi.org/10.1155/2018/8293036, 8293036.
- 7 Jenkins M., Frolov A., Tan Y., Daly D., Lawson C., and Martin J., Situs inversus totalis in a 96-year-old female cadaver: evidence pointing toward the two-cilia model, Italian Journal of Anatomy and Embryology. (2019) 124, no. 2, 230–246.
- 8
Solloway M. J.,
Solloway M. J.,
Dudley A. T.,
Bikoff E. K.,
Lyons K. M.,
Hogan B. L. M., and
Robertson E. J., Mice lacking Bmp6 function, Developmental Genetics. (1998) 22, no. 4, 321–339, https://doi.org/10.1002/(SICI)1520-6408(1998)22:4<321::AID-DVG3>3.0.CO;2-8.
10.1002/(SICI)1520-6408(1998)22:4<321::AID-DVG3>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 9 Murashima-Suginami A., Takahashi K., Sakata T., Tsukamoto H., Sugai M., Yanagita M., Shimizu A., Sakurai T., Slavkin H. C., and Bessho K., Enhanced BMP signaling results in supernumerary tooth formation in USAG-1 deficient mouse, Biochemical and Biophysical Research Communications. (2008) 369, no. 4, 1012–1016, https://doi.org/10.1016/j.bbrc.2008.02.135, 2-s2.0-41149157332.
- 10 Cleves P. A., Ellis N. A., Jimenez M. T., Nunez S. M., Schluter D., Kingsley D. M., and Miller C. T., Evolved tooth gain in sticklebacks is associated with a cis-regulatory allele of Bmp6, Proceedings of the National Academy of Sciences. (2014) 111, no. 38, 13912–13917, https://doi.org/10.1073/pnas.1407567111, 2-s2.0-84907212410.
- 11 Garcia-Garcia A. S., Martinez-Gonzalez J. M., Gomez-Font R., Soto-Rivadeneira A., and Oviedo-Roldan L., Current status of the torus palatinus and torus mandibularis, Medicina Oral Patología Oral y Cirugía Bucal. (2009) 15, no. 2, e353–e360, https://doi.org/10.4317/medoral.15.e353, 2-s2.0-77749249144.
- 12 Agochukwu N. B., Solomon Benjamin D., Doherty Emily S., and Muenke Maximilian, Palatal and oral manifestations of muenke syndrome (FGFR3-related craniosynostosis), Journal of Craniofacial Surgery. (2012) 23, no. 3, 664–668, https://doi.org/10.1097/SCS.0b013e31824db8bb, 2-s2.0-85027923600.
- 13
Jane Jr J. A.,
Lin K. Y., and
Jane Sr J. A., Sagittal synostosis, Neurosurgical Focus. (2000) 9, no. 3, 1–6, https://doi.org/10.3171/foc.2000.9.3.4.
10.3171/foc.2000.9.3.4 Google Scholar
- 14 Salokorpi N., Savolainen T., Sinikumpu J.-J., Ylikontiola L., Sándor G. K., Pirttiniemi P., and Serlo W., Outcomes of 40 nonsyndromic sagittal craniosynostosis patients as adults: a case-control study with 26 years of postoperative follow-up, Operative Neurosurgery (Hagerstown). (2019) 16, no. 1, 1–8, https://doi.org/10.1093/ons/opy047, 2-s2.0-85059261770.
- 15
Thompson D. N. P.,
Malcolm G. P.,
Jones B. M.,
Harkness W. J., and
Hayward R. D., Intracranial pressure in single-suture craniosynostosis, Pediatric Neurosurgery. (2004) 22, no. 5, 235–240, https://doi.org/10.1159/000120907, 2-s2.0-0029025364.
10.1159/000120907 Google Scholar
- 16 Cohen S. R. and Persing J. A., Intracranial pressure in single-suture craniosynostosis, The Cleft Palate-Craniofacial Journal. (1998) 35, no. 3, 194–196, https://doi.org/10.1597/1545-1569_1998_035_0194_ipissc_2.3.co_2.
- 17 Runyan C. M. and Gabrick K. S., Biology of bone formation, fracture healing, and distraction osteogenesis, Journal of Craniofacial Surgery. (2017) 28, no. 5, 1380–1389, https://doi.org/10.1097/SCS.0000000000003625, 2-s2.0-85020131488.
- 18 Grant G. A., Jolley M., Ellenbogen R. G., Roberts T. S., Gruss J. R., and Loeser J. D., Failure of autologous bone—assisted cranioplasty following decompressive craniectomy in children and adolescents, Journal of Neurosurgery: Pediatrics. (2004) 100, no. 2, 163–168, https://doi.org/10.3171/ped.2004.100.2.0163.
- 19 Bobinski L., Koskinen L. O., and Lindvall P., Complications following cranioplasty using autologous bone or polymethylmethacrylate–retrospective experience from a single center, Clinical Neurology and Neurosurgery. (2013) 115, no. 9, 1788–1791, https://doi.org/10.1016/j.clineuro.2013.04.013, 2-s2.0-84887618873.
- 20 Piitulainen J. M., Kauko T., Aitasalo K. M. J., Vuorinen V., Vallittu P. K., and Posti J. P., Outcomes of cranioplasty with synthetic materials and autologous bone grafts, World Neurosurgery. (2015) 83, no. 5, 708–714, https://doi.org/10.1016/j.wneu.2015.01.014, 2-s2.0-84929517529.
- 21 Cowan C. M., Aalami O. O., Shi Y. Y., Chou Y. F., Mari C., Thomas R., Quarto N., Nacamuli R. P., Contag C. H., Wu B., and Longaker M. T., Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment, and bone turnover, Tissue Engineering. (2005) 11, no. 3–4, 645–658, https://doi.org/10.1089/ten.2005.11.645, 2-s2.0-20944437444.
- 22 Einhorn T. A. and Gerstenfeld L. C., Fracture healing: mechanisms and interventions interventions, Nature Reviews Rheumatology. (2015) 11, no. 1, 45–54, https://doi.org/10.1038/nrrheum.2014.164, 2-s2.0-84925503883.
- 23 Barbian L. T. and Sledzik P. S., Healing following cranial trauma, Journal of Forensic Sciences. (2008) 53, no. 2, 263–268, https://doi.org/10.1111/j.1556-4029.2007.00651.x, 2-s2.0-41149160357.
- 24 Sirola K., Regeneration of defects in the calvaria. an experimental study, Annales Medicinae Experimentalis et Biologiae Fenniae. (1960) 38, no. 2, 1–87.
- 25 Beck L. S., Amento E. P., Xu Y., Deguzman L., Lee W. P., Nguyen T., and Gillett N. A., TGF-beta 1 induces bone closure of skull defects: temporal dynamics of bone formation in defects exposed to rhTGF-beta 1, Journal of Bone and Mineral Research. (1993) 8, no. 6, 753–761, https://doi.org/10.1002/jbmr.5650080614, 2-s2.0-0027223020.
- 26 Prevot M., Renier D., and Marchac D., Lack of ossification after cranioplasty for craniosynostosis: a review of relevant factors in 592 consecutive patients, The Journal of Craniofacial Surgery. (1993) 4, no. 4, 247–254.
- 27 McBeath R., Pirone D. M., Nelson C. M., Bhadriraju K., and Chen C. S., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Developmental Cell. (2004) 6, no. 4, 483–95, https://doi.org/10.1016/S1534-5807(04)00075-9, 2-s2.0-1842426730.
- 28 Khatiwala C. B., Kim P. D., Peyton S. R., and Putnam A. J., ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK, Journal of Bone and Mineral Research. (2009) 24, no. 5, 886–898, https://doi.org/10.1359/jbmr.081240, 2-s2.0-65949097929.
- 29 Wang Y. K., Yu X., Cohen D. M., Wozniak M. A., Yang M. T., Gao L., Eyckmans J., and Chen C. S., Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension, Stem Cells and Development. (2012) 21, no. 7, 1176–1186, https://doi.org/10.1089/scd.2011.0293, 2-s2.0-84860140464.
- 30 Anthony D. F., Sin Y. Y., Vadrevu S., Advant N., Day J. P., Byrne A. M., Lynch M. J., Milligan G., Houslay M. D., and Baillie G. S., Beta-arrestin 1 inhibits the GTPase-activating protein function of ARHGAP21, promoting activation of RhoA following angiotensin II type 1A receptor stimulation, Molecular and Cellular Biology. (2011) 31, no. 5, 1066–1075, https://doi.org/10.1128/MCB.00883-10, 2-s2.0-79952265050.
- 31 Lazarini M., Traina F., Machado-Neto J. A., Barcellos K. S. A., Moreira Y. B., Brandão M. M., Verjovski -Almeida S., Ridley A. J., and Saad S. T. O., ARHGAP21 is a RhoGAP for RhoA and RhoC with a role in proliferation and migration of prostate adenocarcinoma cells, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. (2013) 1832, no. 2, 365–374, https://doi.org/10.1016/j.bbadis.2012.11.010, 2-s2.0-84871807496.
- 32 Angers S. and Moon R. T., Proximal events in Wnt signal transduction, Nature Reviews Molecular cell Biology. (2009) 10, no. 7, 468–477, https://doi.org/10.1038/nrm2717, 2-s2.0-67649470380.
- 33 Djiane A., Yogev S., and Mlodzik M., The apical determinants aPKC and dPatj regulate frizzled-dependent planar cell polarity in the drosophila eye, Cell. (2005) 121, no. 4, 621–631, https://doi.org/10.1016/j.cell.2005.03.014, 2-s2.0-19344363080.
- 34 Scholz B., Korn C., Wojtarowicz J., Mogler C., Augustin I., Boutros M., Niehrs C., and Augustin H. G., Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca2+/NFAT signaling, Developmental Cell. (2016) 36, no. 1, 79–93, https://doi.org/10.1016/j.devcel.2015.12.015, 2-s2.0-84958749076.
- 35 Bagriantsev S. N., Gracheva E. O., and Gallagher P. G., Piezo proteins: regulators of mechanosensation and other cellular processes, Journal of Biological Chemistry. (2014) 289, no. 46, 31673–31681, https://doi.org/10.1074/jbc.R114.612697, 2-s2.0-84911451723.
- 36 Sugimoto A., Miyazaki A., Kawarabayashi K., Shono M., Akazawa Y., Hasegawa T., Ueda-Yamaguchi K., Kitamura T., and Yoshizaki K., Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells, Scientific Reports. (2017) 7, no. 1, https://doi.org/10.1038/s41598-017-18089-0, 2-s2.0-85038567061.
- 37 Smith P. G., Roy C., Zhang Y. N., and Chauduri S., Mechanical stress increases RhoA activation in airway smooth muscle cells, American Journal of Respiratory Cell and Molecular Biology. (2003) 28, no. 4, 436–442, https://doi.org/10.1165/rcmb.4754, 2-s2.0-0037383931.
- 38 Wang W. J., Tay H. G., Soni R., Perumal G. S., Goll M. G., Macaluso F. P., Asara J. M., Amack J. D., and Bryan Tsou M.-F., CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base, Nature Cell Biology. (2013) 15, no. 6, 591–601, https://doi.org/10.1038/ncb2739, 2-s2.0-84878614972.
- 39 Yang J., Liu X., Yue G., Adamian M., Bulgakov O., and Li T., Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet, The Journal of Cell Biology. (2002) 159, no. 3, 431–440, https://doi.org/10.1083/jcb.200207153, 2-s2.0-0037064591.
- 40 Thomas J., Morlé L., Soulavie F., Laurençon A., Sagnol S., and Durand B., Transcriptional control of genes involved in ciliogenesis: a first step in making cilia, Biology of the Cell. (2010) 102, no. 9, 499–513, https://doi.org/10.1042/BC20100035, 2-s2.0-77956841203.
- 41 Schock E. N. and Brugmann S. A., Discovery diagnosis and etiology of craniofacial ciliopathies, Cold Spring Harbor Perspectives in Biology. (2017) 9, no. 9, https://doi.org/10.1101/cshperspect.a028258, 2-s2.0-85028939986.
- 42
Murad G. J. A.,
Clayman M.,
Seagle M. B.,
White S.,
Perkins L. A., and
Pincus D. W., Endoscopic-assisted repair of craniosynostosis, Neurosurgical Focus. (2005) 19, no. 6, 1–10, https://doi.org/10.3171/foc.2005.19.6.7.
10.3171/foc.2005.19.6.7 Google Scholar
- 43 Adamo M. A. and Pollack I. F., A single-center experience with symptomatic postoperative calvarial growth restriction after extended strip craniectomy for sagittal craniosynostosis, Journal of Neurosurgery: Pediatrics. (2010) 5, no. 1, 131–135, https://doi.org/10.3171/2009.8.PEDS09227, 2-s2.0-75449086670.
- 44 Marucci D. D., Johnston C. P., Anslow P., Jayamohan J., Richards P. G., Wilkie A. O. M., and Wall S. A., Implications of a vertex bulge following modified strip craniectomy for sagittal synostosis, Plastic and Reconstructive Surgery. (2008) 122, no. 1, 217–224, https://doi.org/10.1097/PRS.0b013e3181774240, 2-s2.0-48049123080.