Crosstalk between Aryl Hydrocarbon Receptor and Glucocorticoid Receptor in Human Retinal Pigment Epithelial Cells
Hong Lan Jin
Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea gachon.ac.kr
Search for more papers by this authorYujin Choi
Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea gachon.ac.kr
Search for more papers by this authorCorresponding Author
Kwang Won Jeong
Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea gachon.ac.kr
Search for more papers by this authorHong Lan Jin
Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea gachon.ac.kr
Search for more papers by this authorYujin Choi
Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea gachon.ac.kr
Search for more papers by this authorCorresponding Author
Kwang Won Jeong
Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea gachon.ac.kr
Search for more papers by this authorAbstract
The aryl hydrocarbon receptor (AHR) is known to mediate the cellular reaction involved in processing environmental contaminants and, ultimately, preventing accumulation of unfavorable extra lipids and proteins. Glucocorticoid receptor (GR) mediates the expression of genes associated with anti-inflammatory properties. Because AHR and GR are closely related in lipid metabolic dysregulation and inflammation, we speculate that AHR and GR may play a crucial role in AMD pathogenesis and focus on their crosstalk in human retinal pigment epithelial cells (ARPE-19). However, how AHR and GR regulate each other’s signaling pathways is still poorly understood. In this research, we demonstrate that GR attenuates AHR-mediated gene expression by inhibition of nuclear translocation of AHR mediated by TCDD. Chromatin immunoprecipitation analysis demonstrated that GR repress AHR recruitment and chromatin accessibility response to TCDD + Dex treatment leading to repression of AHR target genes. In contrast, AHR facilitates GR-mediated expression in ARPE-19. AHR increases GR recruitment on GRE of GR target genes. Coimmunoprecipitation assay revealed that AHR is associated with GR in ARPE-19 cells and the interaction is enhanced by the addition of TCDD and Dex. Taken together, these studies provide a molecular mechanism of crosstalk between AHR and GR in target gene expression in ARPE-19 cells.
References
- 1 Klein R., Lee K. E., Gangnon R. E., and Klein B. E., Incidence of visual impairment over a 20-year period: The beaver dam eye Study, Ophthalmology. (2013) 120, no. 6, 1210–1219, 23466270, https://doi.org/10.1016/j.ophtha.2012.11.041, 2-s2.0-84878596566.
- 2 Zarbin M. A., Current concepts in the pathogenesis of age-related macular degeneration, Archives of Ophthalmology. (2004) 122, no. 4, 598–614, 15078679, https://doi.org/10.1001/archopht.122.4.598, 2-s2.0-1842478123.
- 3 Curcio C. A. and Millican C., Basal linear deposit and large drusen are specific for early age-related maculopathy, Archives of Ophthalmology. (1999) 117, no. 3, 329–339, 10088810.
- 4 Jin H. L., Lee S.-C., Kwon Y. S., Choung S.-Y., and Jeong K. W., A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors, Journal of Pharmaceutical and Biomedical Analysis. (2016) 117, 560–567, 26604166, https://doi.org/10.1016/j.jpba.2015.10.010, 2-s2.0-84946429650.
- 5 Bird A. C., Bressler N. M., Bressler S. B., Chisholm I. H., Coscas G., Davis M. D., de Jong P. T., Klaver C. C., Klein B. E., Klein R. et al., An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM epidemiological Study Group, Survey of Ophthalmology. (1995) 39, no. 5, 367–374, 7604360.
- 6 Seddon J. M. and Chen C. A., The epidemiology of age-related macular degeneration, International Ophthalmology Clinics. (2004) 44, no. 4, 17–39, 15577562.
- 7 Hu P., Herrmann R., Bednar A., Saloupis P., Dwyer M. A., Yang P., Qi X., Thomas R. S., Jaffe G. J., Boulton M. E., McDonnell D. P., and Malek G., Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology, Proceedings of the National Academy of Sciences of the United States of America. (2013) 110, no. 43, E4069–E4078, 24106308, https://doi.org/10.1073/pnas.1307574110, 2-s2.0-84886420285.
- 8 Kung T., Murphy K. A., and White L. A., The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism, Biochemical Pharmacology. (2009) 77, no. 4, 536–546, 18940186, https://doi.org/10.1016/j.bcp.2008.09.031, 2-s2.0-59349094114.
- 9 De Abrew K. N., Kaminski N. E., and Thomas R. S., An integrated genomic analysis of aryl hydrocarbon receptor-mediated inhibition of B-cell differentiation, Toxicological Sciences. (2010) 118, no. 2, 454–469, 20819909, https://doi.org/10.1093/toxsci/kfq265, 2-s2.0-78549239910.
- 10 Hillegass J. M., Murphy K. A., Villano C. M., and White L. A., The impact of aryl hydrocarbon receptor signaling on matrix metabolism: Implications for development and disease, Biological Chemistry. (2006) 387, no. 9, 1159–1173, 16972783, https://doi.org/10.1515/BC.2006.144, 2-s2.0-33748740824.
- 11 Ohtake F., Baba A., Takada I., Okada M., Iwasaki K., Miki H., Takahashi S., Kouzmenko A., Nohara K., Chiba T., Fujii-Kuriyama Y., and Kato S., Dioxin receptor is a ligand-dependent E3 ubiquitin ligase, Nature. (2007) 446, no. 7135, 562–566, 17392787, https://doi.org/10.1038/nature05683, 2-s2.0-34047094888.
- 12 Sato S., Shirakawa H., Tomita S., Ohsaki Y., Haketa K., Tooi O., Santo N., Tohkin M., Furukawa Y., Gonzalez F. J., and Komai M., Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver, Toxicology and Applied Pharmacology. (2008) 229, no. 1, 10–19, 18295293, https://doi.org/10.1016/j.taap.2007.12.029, 2-s2.0-42749087554.
- 13 Tanos R., Murray I. A., Smith P. B., Patterson A., and Perdew G. H., Role of the ah receptor in homeostatic control of fatty acid synthesis in the liver, Toxicological Sciences. (2012) 129, no. 2, 372–379, 22696238, https://doi.org/10.1093/toxsci/kfs204, 2-s2.0-84866609647.
- 14 Dwyer M. A., Kazmin D., Hu P., McDonnell D. P., and Malek G., Research resource: Nuclear receptor atlas of human retinal pigment epithelial cells: Potential relevance to age-related macular degeneration, Molecular Endocrinology. (2011) 25, no. 2, 360–372, 21239617, https://doi.org/10.1210/me.2010-0392, 2-s2.0-79951715828.
- 15 Bamberger C. M., Schulte H. M., and Chrousos G. P., Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids, Endocrine Reviews. (1996) 17, no. 3, 245–261, 8771358, https://doi.org/10.1210/edrv-17-3-245.
- 16 Becerra E. M., Morescalchi F., Gandolfo F., Danzi P., Nascimbeni G., Arcidiacono B., and Semeraro F., Clinical evidence of intravitreal triamcinolone acetonide in the management of age-related macular degeneration, Current Drug Targets. (2011) 12, no. 2, 149–172.
- 17 Ayalasomayajula S. P., Ashton P., and Kompella U. B., Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-alpha-induced angiogenesis in chick chorioallantoic membrane (CAM), Journal of Ocular Pharmacology and Therapeutics. (2009) 25, no. 2, 97–103, 19284324, https://doi.org/10.1089/jop.2008.0090, 2-s2.0-68149089755.
- 18 Sato S., Shirakawa H., Tomita S., Tohkin M., Gonzalez F. J., and Komai M., The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A, Toxicology and Applied Pharmacology. (2013) 273, no. 1, 90–99, 23994556, https://doi.org/10.1016/j.taap.2013.08.017, 2-s2.0-84884726266.
- 19 Dvorak Z., Vrzal R., Pavek P., and Ulrichova J., An evidence for regulatory cross-talk between aryl hydrocarbon receptor and glucocorticoid receptor in HepG2 cells, Physiological Research. (2008) 57, no. 3, 427–435.
- 20 Vrzal R., Stejskalova L., Monostory K., Maurel P., Bachleda P., Pavek P., and Dvorak Z., Dexamethasone controls aryl hydrocarbon receptor (AhR)-mediated CYP1A1 and CYP1A2 expression and activity in primary cultures of human hepatocytes, Chemico-Biological Interactions. (2009) 179, no. 2-3, 288–296, 19022236, https://doi.org/10.1016/j.cbi.2008.10.035, 2-s2.0-62549089278.
- 21 Abbott B. D., Review of the interaction between TCDD and glucocorticoids in embryonic palate, Toxicology. (1995) 105, no. 2-3, 365–373, 8571373.
- 22 Abbott B. D., Schmid J. E., Brown J. G., Wood C. R., White R. D., Buckalew A. R., and Held G. A., RT-PCR quantification of AHR, ARNT, GR, and CYP1A1 mRNA in craniofacial tissues of embryonic mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone, Toxicological Sciences. (1999) 47, no. 1, 76–85, 10048155.
- 23 Bittencourt D., Wu D.-Y., Jeong K. W., Gerke D. S., Herviou L., Ianculescu I., Chodankar R., Siegmund K. D., and Stallcup M. R., G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes, Proceedings of the National Academy of Sciences. (2012) 109, no. 48, 19673–19678, 23151507, https://doi.org/10.1073/pnas.1211803109, 2-s2.0-84870386866.
- 24 Jeong K. W., Lee Y.-H., and Stallcup M. R., Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator flightless-I, Journal of Biological Chemistry. (2009) 284, no. 43, 29298–29309, 19720835, https://doi.org/10.1074/jbc.M109.037010, 2-s2.0-70350367859.
- 25 Jeong K. W., Andreu-Vieyra C., You J. S., Jones P. A., and Stallcup M. R., Establishment of active chromatin structure at enhancer elements by mixed-lineage leukemia 1 to initiate estrogen-dependent gene expression, Nucleic Acids Research. (2014) 42, no. 4, 2245–2256, 24288367, https://doi.org/10.1093/nar/gkt1236, 2-s2.0-84895803070, 84895803070.
- 26 Jin H. L. and Jeong K. W., Regulation of aryl hydrocarbon receptor-mediated transcription in human retinal pigmented epithelial cells, Biochemical and Biophysical Research Communications. (2016) 472, no. 2, 366–372, 26966070, https://doi.org/10.1016/j.bbrc.2016.03.006, 2-s2.0-84959873433.
- 27 Dwyer M. A., Kazmin D., Hu P., McDonnell D. P., and Malek G., Research resource: Nuclear receptor atlas of human retinal pigment epithelial cells: Potential relevance to age-related macular degeneration, Molecular Endocrinology. (2011) 25, no. 2, 360–372, 21239617, https://doi.org/10.1210/me.2010-0392, 2-s2.0-79951715828.
- 28 Stejskalova L., Rulcova A., Vrzal R., Dvorak Z., and Pavek P., Dexamethasone accelerates degradation of aryl hydrocarbon receptor (AHR) and suppresses CYP1A1 induction in placental JEG-3 cell line, Toxicology Letters. (2013) 223, no. 2, 183–191, 24091107, https://doi.org/10.1016/j.toxlet.2013.09.014, 2-s2.0-84886290607.
- 29 Bonilha V. L., Age and disease-related structural changes in the retinal pigment epithelium, Clinical Ophthalmology. (2008) 2, no. 2, 413–424, 19668732.
- 30 Dunn K., Aotaki-Keen A., Putkey F., and Hjelmeland L. M., ARPE-19, a human retinal pigment epithelial cell line with differentiated properties, Experimental Eye Research. (1996) 62, no. 2, 155–170, 8698076, https://doi.org/10.1006/exer.1996.0020, 2-s2.0-0029872876.
- 31 Alexander D. L., Ganem L. G., Fernandez-Salguero P., Gonzalez F., and Jefcoate C. R., Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis, Journal of Cell Science. (1998) 111, no. 22, 3311–3322, 9788873.
- 32 Hu P., Herrmann R., Bednar A., Saloupis P., Dwyer M. A., Yang P., Qi X., Thomas R. S., Jaffe G. J., and Boulton M. E., Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology, Proceedings of the National Academy of Sciences. (2013) 110, no. 43, E4069–E4078, 24106308, https://doi.org/10.1073/pnas.1307574110, 2-s2.0-84886420285.
- 33 He S., Wang H.-M., Ye J., Ogden T. E., Ryan S. J., and Hinton D. R., Dexamethasone induced proliferation of cultured retinal pigment epithelial cells, Current Eye Research. (1994) 13, no. 4, 257–261, 8033587.
- 34
Kadmiel M.,
Ramamoorthy S.,
Foley J. F., and
Cidlowski J. A., OR24-1: Critical Role of the Glucocorticoid Receptor in the Mouse Retina, 2016, Endocrine Society, Washington, DC, https://doi.org/10.1016/j.exer.2016.08.020, 27600171, 84990911521.
10.1016/j.exer.2016.08.020 Google Scholar
- 35 Bielefeld K. A., Lee C., and Riddick D. S., Regulation of aryl hydrocarbon receptor expression and function by glucocorticoids in mouse hepatoma cells, Drug Metabolism and Disposition. (2008) 36, no. 3, 543–551, 18086832, https://doi.org/10.1124/dmd.107.019703, 2-s2.0-40849088078.
- 36 Dvorak Z., Vrzal R., Pávek P., and Ulrichová J., An evidence for regulatory cross-talk between aryl hydrocarbon receptor and glucocorticoid receptor in HepG2 cells, Physiological Research. (2008) 57, no. 3, 17552871, 40849108656.
- 37 Sonneveld E., Jonas A., Meijer O. C., Brouwer A., and Van der Burg B., Glucocorticoid-enhanced expression of dioxin target genes through regulation of the rat aryl hydrocarbon receptor, Toxicological Sciences. (2007) 99, no. 2, 455–469, 17690134, https://doi.org/10.1093/toxsci/kfm176, 2-s2.0-38449091780.