Subclinical Detection of Diabetic Cardiomyopathy with MicroRNAs: Challenges and Perspectives
Luis E. León
Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, 7710162 Santiago, Chile udd.cl
Search for more papers by this authorSweta Rani
Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland nuigalway.ie
Search for more papers by this authorMauricio Fernandez
Clínica Alemana, 7650568 Santiago, Chile alemana.cl
Search for more papers by this authorMartín Larico
Clínica Alemana, 7650568 Santiago, Chile alemana.cl
Search for more papers by this authorCorresponding Author
Sebastián D. Calligaris
Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, 7710162 Santiago, Chile udd.cl
Search for more papers by this authorLuis E. León
Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, 7710162 Santiago, Chile udd.cl
Search for more papers by this authorSweta Rani
Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland nuigalway.ie
Search for more papers by this authorMauricio Fernandez
Clínica Alemana, 7650568 Santiago, Chile alemana.cl
Search for more papers by this authorMartín Larico
Clínica Alemana, 7650568 Santiago, Chile alemana.cl
Search for more papers by this authorCorresponding Author
Sebastián D. Calligaris
Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, 7710162 Santiago, Chile udd.cl
Search for more papers by this authorAbstract
The prevalence of cardiac diabetic diseases has been increased around the world, being the most common cause of death and disability among diabetic patients. In particular, diabetic cardiomyopathy is characterized with a diastolic dysfunction and cardiac remodelling without signs of hypertension and coronary artery diseases. In an early stage, it is an asymptomatic disease; however, clinical studies demonstrate that diabetic myocardia are more vulnerable to injury derived by acute myocardial infarct and are the worst prognosis for rehabilitation. Currently, biochemical and imaging diagnostic methods are unable to detect subclinical manifestation of the disease (prior to diastolic dysfunction). In this review, we elaborately discuss the current scientific evidences to propose circulating microRNAs as promising biomarkers for early detection of diabetic cardiomyopathy and, then, to identify patients at high risk of diabetic cardiomyopathy development. Moreover, here we summarise the research strategies to identify miRNAs as potential biomarkers, present limitations, challenges, and future perspectives.
References
- 1 IDF, IDF Diabetes Atlas, 2014, 6th edition, International Diabetes Federation, Brussels, Belgium.
- 2 Blendea M. C., McFarlane S. I., Isenovic E. R., Gick G., and Sowers J. R., Heart disease in diabetic patients, Current Diabetes Reports. (2003) 3, no. 3, 223–229, https://doi.org/10.1007/s11892-003-0068-z, 2-s2.0-0043022190.
- 3 Vinik A. I. and Ziegler D., Diabetic cardiovascular autonomic neuropathy, Circulation. (2007) 115, no. 3, 387–397, https://doi.org/10.1161/CIRCULATIONAHA.106.634949, 2-s2.0-33846435723.
- 4 Bugger H. and Bode C., The vulnerable myocardium. Diabetic cardiomyopathy, Hämostaseologie. (2015) 35, no. 1, 17–24, https://doi.org/10.5482/HAMO-14-09-0038.
- 5 From A. M., Leibson C. L., Bursi F., Redfield M. M., Weston S. A., Jacobsen S. J., Rodeheffer R. J., and Roger V. L., Diabetes in heart failure: prevalence and impact on outcome in the population, The American Journal of Medicine. (2006) 119, no. 7, 591–599, https://doi.org/10.1016/j.amjmed.2006.05.024, 2-s2.0-33745894642.
- 6 Shah A. M., Uno H., Køber L., Velazquez E. J., Maggioni A. P., MacDonald M. R., Petrie M. C., McMurray J. J. V., Califf R. M., Pfeffer M. A., and Solomon S. D., The inter-relationship of diabetes and left ventricular systolic function on outcome after high-risk myocardial infarction, European Journal of Heart Failure. (2010) 12, no. 11, 1229–1237, https://doi.org/10.1093/eurjhf/hfq179, 2-s2.0-77958606968.
- 7 Rubler S., Dlugash J., Yuceoglu Y. Z., Kumral T., Branwood A. W., and Grishman A., New type of cardiomyopathy associated with diabetic glomerulosclerosis, The American Journal of Cardiology. (1972) 30, no. 6, 595–602, https://doi.org/10.1016/0002-9149(72)90595-4, 2-s2.0-0015498586.
- 8 Bugger H. and Abel E. D., Rodent models of diabetic cardiomyopathy, Disease Models & Mechanisms. (2009) 2, no. 9-10, 454–466, https://doi.org/10.1242/dmm.001941, 2-s2.0-70450211783.
- 9 Bugger H. and Abel E. D., Molecular mechanisms of diabetic cardiomyopathy, Diabetologia. (2014) 57, no. 4, 660–671, https://doi.org/10.1007/s00125-014-3171-6, 2-s2.0-84896092380.
- 10 Miki T., Yuda S., Kouzu H., and Miura T., Diabetic cardiomyopathy: pathophysiology and clinical features, Heart Failure Reviews. (2013) 18, no. 2, 149–166, https://doi.org/10.1007/s10741-012-9313-3, 2-s2.0-84876569165.
- 11 Dei Cas A., Spigoni V., Ridolfi V., and Metra M., Diabetes and chronic heart failure: from diabetic cardiomyopathy to therapeutic approach, Endocrine, Metabolic & Immune Disorders—Drug Targets. (2013) 13, no. 1, 38–50, https://doi.org/10.2174/1871530311313010006, 2-s2.0-84875869766.
- 12 Boudina S. and Abel E. D., Diabetic cardiomyopathy, causes and effects, Reviews in Endocrine & Metabolic Disorders. (2010) 11, no. 1, 31–39, https://doi.org/10.1007/s11154-010-9131-7, 2-s2.0-77953440109.
- 13 Chavali V., Tyagi S. C., and Mishra P. K., Predictors and prevention of diabetic cardiomyopathy, Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. (2013) 6, 151–160, https://doi.org/10.2147/DMSO.S30968, 2-s2.0-84876268954.
- 14 Teupe C. and Rosak C., Diabetic cardiomyopathy and diastolic heart failure—difficulties with relaxation, Diabetes Research and Clinical Practice. (2012) 97, no. 2, 185–194, https://doi.org/10.1016/j.diabres.2012.03.008, 2-s2.0-84865079375.
- 15 Ha J.-W., Lee H.-C., Kang E.-S., Ahn C.-M., Kim J.-M., Ahn J.-A., Lee S.-W., Choi E.-Y., Rim S.-J., Oh J. K., and Chung N., Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography, Heart. (2007) 93, no. 12, 1571–1576, https://doi.org/10.1136/hrt.2006.101667, 2-s2.0-36749094626.
- 16 McGavock J. M., Lingvay I., Zib I., Tillery T., Salas N., Unger R., Levine B. D., Raskin P., Victor R. G., and Szczepaniak L. S., Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study, Circulation. (2007) 116, no. 10, 1170–1175, https://doi.org/10.1161/circulationaha.106.645614, 2-s2.0-34548385838.
- 17 Shah P., Choi B. G., and Mazhari R., Positron emission tomography for the evaluation and treatment of cardiomyopathy, Annals of the New York Academy of Sciences. (2011) 1228, no. 1, 137–149, https://doi.org/10.1111/j.1749-6632.2011.06017.x, 2-s2.0-79959801590.
- 18 Romano S., Di Mauro M., Fratini S., Guarracini L., Guarracini F., Poccia G., and Penco M., Early diagnosis of left ventricular diastolic dysfunction in diabetic patients: a possible role for natriuretic peptides, Cardiovascular Diabetology. (2010) 9, article 89, https://doi.org/10.1186/1475-2840-9-89, 2-s2.0-78650101878.
- 19 Rahimi K., Bennett D., Conrad N., Williams T. M., Basu J., Dwight J., Woodward M., Patel A., McMurray J., and MacMahon S., Risk prediction in patients with heart failure: a systematic review and analysis, JACC: Heart Failure. (2014) 2, no. 5, 440–446, https://doi.org/10.1016/j.jchf.2014.04.008, 2-s2.0-84908071827.
- 20 Palazzuoli A., Masson S., Ronco C., and Maisel A., Clinical relevance of biomarkers in heart failure and cardiorenal syndrome: the role of natriuretic peptides and troponin, Heart Failure Reviews. (2014) 19, no. 2, 267–284, https://doi.org/10.1007/s10741-013-9391-x, 2-s2.0-84896738859.
- 21 Lai E. C., Two decades of miRNA biology: lessons and challenges, RNA. (2015) 21, no. 4, 675–677, https://doi.org/10.1261/rna.051193.115.
- 22 Asrih M. and Steffens S., Emerging role of epigenetics and miRNA in diabetic cardiomyopathy, Cardiovascular Pathology. (2013) 22, no. 2, 117–125, https://doi.org/10.1016/j.carpath.2012.07.004, 2-s2.0-84873410231.
- 23 Cortessis V. K., Thomas D. C., Joan Levine A., Breton C. V., Mack T. M., Siegmund K. D., Haile R. W., and Laird P. W., Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships, Human Genetics. (2012) 131, no. 10, 1565–1589, https://doi.org/10.1007/s00439-012-1189-8, 2-s2.0-84866740172.
- 24 Ambros V., The functions of animal microRNAs, Nature. (2004) 431, no. 7006, 350–355, https://doi.org/10.1038/nature02871, 2-s2.0-4644309196.
- 25 Filipowicz W., Bhattacharyya S. N., and Sonenberg N., Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?, Nature Reviews Genetics. (2008) 9, no. 2, 102–114, https://doi.org/10.1038/nrg2290, 2-s2.0-38349169664.
- 26 Lu H., Buchan R. J., and Cook S. A., MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism, Cardiovascular Research. (2010) 86, no. 3, 410–420, https://doi.org/10.1093/cvr/cvq010, 2-s2.0-77952346716.
- 27 El Azzouzi H., Leptidis S., Dirkx E., Hoeks J., Van Bree B., Brand K., McClellan E. A., Poels E., Sluimer J. C., Van Den Hoogenhof M. M. G., Armand A.-S., Yin X., Langley S., Bourajjaj M., Olieslagers S., Krishnan J., Vooijs M., Kurihara H., Stubbs A., Pinto Y. M., Krek W., Mayr M., Martins P. A. D. C., Schrauwen P., and De Windt L. J., The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation, Cell Metabolism. (2013) 18, no. 3, 341–354, https://doi.org/10.1016/j.cmet.2013.08.009, 2-s2.0-84883466769.
- 28 Duan Y., Zhou B., Su H., Liu Y., and Du C., MiR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300, Experimental Cell Research. (2013) 319, no. 3, 173–184, https://doi.org/10.1016/j.yexcr.2012.11.015, 2-s2.0-84872409477.
- 29 Feng B., Chen S., George B., Feng Q., and Chakrabarti S., miR133a regulates cardiomyocyte hypertrophy in diabetes, Diabetes/Metabolism Research and Reviews. (2010) 26, no. 1, 40–49, https://doi.org/10.1002/dmrr.1054, 2-s2.0-75449100509.
- 30 Shen E., Diao X., Wang X., Chen R., and Hu B., MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy, The American Journal of Pathology. (2011) 179, no. 2, 639–650, https://doi.org/10.1016/j.ajpath.2011.04.034, 2-s2.0-80052457747.
- 31 Diao X., Shen E., Wang X., and Hu B., Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice, Molecular Medicine Reports. (2011) 4, no. 4, 633–640, https://doi.org/10.3892/mmr.2011.489, 2-s2.0-79957660775.
- 32 Zhao F., Li B., Wei Y.-Z., Zhou B., Wang H., Chen M., Gan X.-D., Wang Z.-H., and Xiong S.-X., MicroRNA-34a regulates high glucose-induced apoptosis in H9c2 cardiomyocytes, Journal of Huazhong University of Science and Technology—Medical Science. (2013) 33, no. 6, 834–839, https://doi.org/10.1007/s11596-013-1207-7, 2-s2.0-84891612115.
- 33 Yu X.-Y., Song Y.-H., Geng Y.-J., Lin Q.-X., Shan Z.-X., Lin S.-G., and Li Y., Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1, Biochemical and Biophysical Research Communications. (2008) 376, no. 3, 548–552, https://doi.org/10.1016/j.bbrc.2008.09.025, 2-s2.0-53149093956.
- 34 Yildirim S. S., Akman D., Catalucci D., and Turan B., Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1, Cell Biochemistry and Biophysics. (2013) 67, no. 3, 1397–1408, https://doi.org/10.1007/s12013-013-9672-y, 2-s2.0-84888380601.
- 35 Li X., Du N., Zhang Q., Li J., Chen X., Liu X., Hu Y., Qin W., Shen N., Xu C., Fang Z., Wei Y., Wang R., Du Z., Zhang Y., and Lu Y., MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy, Cell Death and Disease. (2014) 5, article e1479, https://doi.org/10.1038/cddis.2014.430.
- 36 Wang X. H., Qian R. Z., Zhang W., Chen S. F., Jin H. M., and Hu R. M., MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats, Clinical and Experimental Pharmacology and Physiology. (2009) 36, no. 2, 181–188, https://doi.org/10.1111/j.1440-1681.2008.05057.x, 2-s2.0-58849094980.
- 37 Panguluri S. K., Tur J., Chapalamadugu K. C., Katnik C., Cuevas J., and Tipparaju S. M., MicroRNA-301a mediated regulation of Kv4.2 in diabetes: identification of key modulators, PLoS ONE. (2013) 8, no. 4, article e60545, https://doi.org/10.1371/journal.pone.0060545, 2-s2.0-84875715362.
- 38 Baseler W. A., Thapa D., Jagannathan R., Dabkowski E. R., Croston T. L., and Hollander J. M., miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart, The American Journal of Physiology—Cell Physiology. (2012) 303, no. 12, C1244–C1251, https://doi.org/10.1152/ajpcell.00137.2012, 2-s2.0-84871285010.
- 39 Kuwabara Y., Horie T., Baba O., Watanabe S., Nishiga M., Usami S., Izuhara M., Nakao T., Nishino T., Otsu K., Kita T., Kimura T., and Ono K., MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway, Circulation Research. (2015) 116, no. 2, 279–288, https://doi.org/10.1161/CIRCRESAHA.116.304707, 2-s2.0-84922104763.
- 40 Ong S. and Wu J. C., Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration, Circulation Research. (2015) 117, no. 1, 7–9, https://doi.org/10.1161/circresaha.115.306593.
- 41 Malik Z. A., Kott K. S., Poe A. J., Kuo T., Chen L., Ferrara K. W., and Knowlton A. A., Cardiac myocyte exosomes: stability, HSP60, and proteomics, The American Journal of Physiology—Heart and Circulatory Physiology. (2013) 304, no. 7, H954–H965, https://doi.org/10.1152/ajpheart.00835.2012, 2-s2.0-84878563156.
- 42 Gennebäck N., Hellman U., Malm L., Larsson G., Ronquist G., Waldenström A., and Mörner S., Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes, Journal of Extracellular Vesicles. (2013) 2, https://doi.org/10.3402/jev.v2i0.20167.
- 43 Waldenström A., Gennebäck N., Hellman U., and Ronquist G., Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells, PLoS ONE. (2012) 7, no. 4, e34653, https://doi.org/10.1371/journal.pone.0034653, 2-s2.0-84859608013.
- 44 Bang C., Batkai S., Dangwal S., Gupta S. K., Foinquinos A., Holzmann A., Just A., Remke J., Zimmer K., Zeug A., Ponimaskin E., Schmiedl A., Yin X., Mayr M., Halder R., Fischer A., Engelhardt S., Wei Y., Schober A., Fiedler J., and Thum T., Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy, The Journal of Clinical Investigation. (2014) 124, no. 5, 2136–2146, https://doi.org/10.1172/jci70577, 2-s2.0-84899128394.
- 45 Rani S., MicroRNA profiling of exosomes isolated from biofluids and conditioned media, Methods in Molecular Biology. (2014) 1182, 131–144, https://doi.org/10.1007/978-1-4939-1062-5-12, 2-s2.0-84907409873.
- 46 Vickers K. C., Palmisano B. T., Shoucri B. M., Shamburek R. D., and Remaley A. T., MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins, Nature Cell Biology. (2011) 13, no. 4, 423–435, https://doi.org/10.1038/ncb2210, 2-s2.0-79953301730.
- 47 Spillmann F., van Linthout S., and Tschöpe C., Cardiac effects of HDL and its components on diabetic cardiomyopathy, Endocrine, Metabolic & Immune Disorders—Drug Targets. (2012) 12, no. 2, 132–147, https://doi.org/10.2174/187153012800493521, 2-s2.0-84861121923.
- 48 Aranda J. F., Madrigal-Matute J., Rotllan N., and Fernández-Hernando C., MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases, Free Radical Biology and Medicine. (2013) 64, 31–39, https://doi.org/10.1016/j.freeradbiomed.2013.07.014, 2-s2.0-84885184011.
- 49 Meister G., Argonaute proteins: functional insights and emerging roles, Nature Reviews Genetics. (2013) 14, no. 7, 447–459, https://doi.org/10.1038/nrg3462, 2-s2.0-84879414849.
- 50 Arroyo J. D., Chevillet J. R., Kroh E. M., Ruf I. K., Pritchard C. C., Gibson D. F., Mitchell P. S., Bennett C. F., Pogosova-Agadjanyan E. L., Stirewalt D. L., Tait J. F., and Tewari M., Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proceedings of the National Academy of Sciences of the United States of America. (2011) 108, no. 12, 5003–5008, https://doi.org/10.1073/pnas.1019055108, 2-s2.0-79953202200.
- 51 Friedman R. C., Farh K. K.-H., Burge C. B., and Bartel D. P., Most mammalian mRNAs are conserved targets of microRNAs, Genome Research. (2009) 19, no. 1, 92–105, https://doi.org/10.1101/gr.082701.108, 2-s2.0-60149095444.
- 52 Mehta J. P., Sequencing small RNA: introduction and data analysis fundamentals, Methods in Molecular Biology. (2014) 1182, 93–103, https://doi.org/10.1007/978-1-4939-1062-5-9, 2-s2.0-84907394735.
- 53 Alexiou P., Maragkakis M., Papadopoulos G. L., Simmosis V. A., Zhang L., and Hatzigeorgiou A. G., The DIANA-mirExTra web server: from gene expression data to microRNA function, PLoS ONE. (2010) 5, no. 2, e9171, https://doi.org/10.1371/journal.pone.0009171, 2-s2.0-77949430343.
- 54 Kunz M., Xiao K., Liang C., Viereck J., Pachel C., Frantz S., Thum T., and Dandekar T., Bioinformatics of cardiovascular miRNA biology, Journal of Molecular and Cellular Cardiology. (2014) https://doi.org/10.1016/j.yjmcc.2014.11.027, 2-s2.0-84919626322.
- 55 Dweep H., Sticht C., Pandey P., and Gretz N., MiRWalk–database: prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes, Journal of Biomedical Informatics. (2011) 44, no. 5, 839–847, https://doi.org/10.1016/j.jbi.2011.05.002, 2-s2.0-79959805164.
- 56 Chim S. S. C., Shing T. K. F., Hung E. C. W., Leung T.-Y., Lau T.-K., Chiu R. W. K., and Lo Y. M. D., Detection and characterization of placental microRNAs in maternal plasma, Clinical Chemistry. (2008) 54, no. 3, 482–490, https://doi.org/10.1373/clinchem.2007.097972, 2-s2.0-40449127919.
- 57 Lawrie C. H., Gal S., Dunlop H. M., Pushkaran B., Liggins A. P., Pulford K., Banham A. H., Pezzella F., Boultwood J., Wainscoat J. S., Hatton C. S. R., and Harris A. L., Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma, British Journal of Haematology. (2008) 141, no. 5, 672–675, https://doi.org/10.1111/j.1365-2141.2008.07077.x, 2-s2.0-43449102192.
- 58 Cortez M. A. and Calin G. A., MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases, Expert Opinion on Biological Therapy. (2009) 9, no. 6, 703–711, https://doi.org/10.1517/14712590902932889, 2-s2.0-67649120071.
- 59 Romaine S. P., Tomaszewski M., Condorelli G., and Samani N. J., MicroRNAs in cardiovascular disease: an introduction for clinicians, Heart. (2015) 101, no. 12, 921–928, https://doi.org/10.1136/heartjnl-2013-305402.
- 60 Tan L., Yu J.-T., and Tan L., Causes and consequences of microRNA dysregulation in neurodegenerative diseases, Molecular Neurobiology. (2015) 51, no. 3, 1249–1262, https://doi.org/10.1007/s12035-014-8803-9, 2-s2.0-84903222362.
- 61 Mack G. S., MicroRNA gets down to business, Nature Biotechnology. (2007) 25, no. 6, 631–638, https://doi.org/10.1038/nbt0607-631, 2-s2.0-34250167627.
- 62 miRBase, 21st version, http://www.mirbase.org/.
- 63 Friedländer M. R., Lizano E., Houben A. J. S., Bezdan D., Báñez-Coronel M., Kudla G., Mateu-Huertas E., Kagerbauer B., González J., Chen K. C., LeProust E. M., Martí E., and Estivill X., Evidence for the biogenesis of more than 1,000 novel human microRNAs, Genome Biology. (2014) 15, no. 4, article R57, https://doi.org/10.1186/gb-2014-15-4-r57, 2-s2.0-84899794728.
- 64 Pritchard C. C., Cheng H. H., and Tewari M., MicroRNA profiling: approaches and considerations, Nature Reviews Genetics. (2012) 13, no. 5, 358–369, https://doi.org/10.1038/nrg3198, 2-s2.0-84859892863.
- 65 Zampetaki A., Kiechl S., Drozdov I., Willeit P., Mayr U., Prokopi M., Mayr A., Weger S., Oberhollenzer F., Bonora E., Shah A., Willeit J., and Mayr M., Plasma MicroRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes, Circulation Research. (2010) 107, no. 6, 810–817, https://doi.org/10.1161/circresaha.110.226357, 2-s2.0-77957259803.
- 66 Ortega F. J., Mercader J. M., Moreno-Navarrete J. M., Rovira O., Guerra E., Esteve E., Xifra G., Martínez C., Ricart W., Rieusset J., Rome S., Karczewska-Kupczewska M., Straczkowski M., and Fernández-Real J. M., Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization, Diabetes Care. (2014) 37, no. 5, 1375–1383, https://doi.org/10.2337/dc13-1847, 2-s2.0-84899081933.
- 67 Liu Y., Gao G., Yang C., Zhou K., Shen B., Liang H., and Jiang X., The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus, International Journal of Molecular Sciences. (2014) 15, no. 6, 10567–10577, https://doi.org/10.3390/ijms150610567, 2-s2.0-84902322012.
- 68 Karolina D. S., Armugam A., Tavintharan S., Wong M. T. K., Lim S. C., Sum C. F., and Jeyaseelan K., MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus, PLoS ONE. (2011) 6, no. 8, e22839, https://doi.org/10.1371/journal.pone.0022839, 2-s2.0-79960932477.
- 69 Pescador N., Pérez-Barba M., Ibarra J. M., Corbatón A., Martínez-Larrad M. T., and Serrano-Ríos M., Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers, PLoS ONE. (2013) 8, no. 10, e77251, https://doi.org/10.1371/journal.pone.0077251, 2-s2.0-84885448790.
- 70 Wang X., Sundquist J., Zöller B., Memon A. A., Palmér K., Sundquist K., and Bennet L., Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2, PLoS ONE. (2014) 9, no. 1, e86792, https://doi.org/10.1371/journal.pone.0086792, 2-s2.0-84900391930.
- 71 Bijkerk R., Duijs J. M., Khairoun M., ter Horst C. J., van der Pol P., Mallat M. J., Rotmans J. I., de Vries A. P., de Koning E. J., de Fijter J. W., Rabelink T. J., van Zonneveld A. J., and Reinders M. E., Circulating MicroRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation, American Journal of Transplantation. (2015) 15, no. 4, 1081–1090, https://doi.org/10.1111/ajt.13072.
- 72 Bellinger M. A., Bean J. S., Rader M. A., Heinz-Taheny K. M., Nunes J. S., Haas J. V., Michael L. F., and Rekhter M. D., Concordant changes of plasma and kidney microRNA in the early stages of acute kidney injury: time course in a mouse model of bilateral renal ischemia-reperfusion, PLoS ONE. (2014) 9, no. 4, e93297, https://doi.org/10.1371/journal.pone.0093297, 2-s2.0-84898853579.
- 73 Acharya S. S., Fendler W., Watson J. et al., Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury, Science Translational Medicine. (2015) 7, no. 287, 287ra269.
- 74 Rotkrua P., Shimada S., Mogushi K., Akiyama Y., Tanaka H., and Yuasa Y., Circulating microRNAs as biomarkers for early detection of diffuse-type gastric cancer using a mouse model, British Journal of Cancer. (2013) 108, no. 4, 932–940, https://doi.org/10.1038/bjc.2013.30, 2-s2.0-84875228019.
- 75 Calligaris S. D., Lecanda M., Solis F., Ezquer M., Gutiérrez J., Brandan E., Leiva A., Sobrevia L., and Conget P., Mice long-term high-fat diet feeding recapitulates human cardiovascular alterations: an animal model to study the early phases of diabetic cardiomyopathy, PLoS ONE. (2013) 8, no. 4, e60931, https://doi.org/10.1371/journal.pone.0060931, 2-s2.0-84876127103.
- 76 Moldovan L., Batte K. E., Trgovcich J., Wisler J., Marsh C. B., and Piper M., Methodological challenges in utilizing miRNAs as circulating biomarkers, Journal of Cellular and Molecular Medicine. (2014) 18, no. 3, 371–390, https://doi.org/10.1111/jcmm.12236, 2-s2.0-84894566114.
- 77 Yang B., Lin H., Xiao J., Lu Y., Luo X., Li B., Zhang Y., Xu C., Bai Y., Wang H., Chen G., and Wang Z., The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2, Nature Medicine. (2007) 13, no. 4, 486–491, https://doi.org/10.1038/nm1569, 2-s2.0-34147095310.
- 78 Xiao J., Luo X., Lin H. et al., MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts, The Journal of Biological Chemistry. (2007) 282, 12363–12367, https://doi.org/10.1074/jbc.C700015200.
- 79 Kong L., Zhu J., Han W., Jiang X., Xu M., Zhao Y., Dong Q., Pang Z., Guan Q., Gao L., Zhao J., and Zhao L., Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study, Acta Diabetologica. (2011) 48, no. 1, 61–69, https://doi.org/10.1007/s00592-010-0226-0, 2-s2.0-79953327099.
- 80 van Rooij E., Sutherland L. B., Liu N., Williams A. H., McAnally J., Gerard R. D., Richardson J. A., and Olson E. N., A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure, Proceedings of the National Academy of Sciences of the United States of America. (2006) 103, no. 48, 18255–18260, https://doi.org/10.1073/pnas.0608791103, 2-s2.0-33845317603.
- 81 Lu Z., Li Y., Takwi A., Li B., Zhang J., Conklin D. J., Young K. H., Martin R., and Li Y., miR-301a as an NF-kappaB activator in pancreatic cancer cells, The EMBO Journal. (2011) 30, no. 1, 57–67, https://doi.org/10.1038/emboj.2010.296, 2-s2.0-78650858038.
- 82 Panama B. K., Latour-Villamil D., Farman G. P., Zhao D., Bolz S.-S., Kirshenbaum L. A., and Backx P. H., Nuclear factor κb downregulates the transient outward potassium current Ito,f through control of KChIP2 expression, Circulation Research. (2011) 108, no. 5, 537–543, https://doi.org/10.1161/CIRCRESAHA.110.229112, 2-s2.0-79952749887.
- 83 Pandey A. K., Agarwal P., Kaur K., and Datta M., MicroRNAs in diabetes: tiny players in big disease, Cellular Physiology and Biochemistry. (2009) 23, no. 4–6, 221–232, https://doi.org/10.1159/000218169, 2-s2.0-66749146650.
- 84 Greco S., Fasanaro P., Castelvecchio S., D′Alessandra Y., Arcelli D., Di Donato M., Malavazos A., Capogrossi M. C., Menicanti L., and Martelli F., MicroRNA dysregulation in diabetic ischemic heart failure patients, Diabetes. (2012) 61, no. 6, 1633–1641, https://doi.org/10.2337/db11-0952, 2-s2.0-84861891920.
- 85 Zhong X., Chung A. C. K., Chen H. Y., Dong Y., Meng X. M., Li R., Yang W., Hou F. F., and Lan H. Y., MiR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes, Diabetologia. (2013) 56, no. 3, 663–674, https://doi.org/10.1007/s00125-012-2804-x, 2-s2.0-84878269299.
- 86 Osipova J., Fischer D.-C., Dangwal S., Volkmann I., Widera C., Schwarz K., Lorenzen J. M., Schreiver C., Jacoby U., Heimhalt M., Thum T., and Haffner D., Diabetes-associated MicroRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study, Journal of Clinical Endocrinology and Metabolism. (2014) 99, no. 9, E1661–E1665, https://doi.org/10.1210/jc.2013-3868, 2-s2.0-84907211338.
- 87 Higuchi C., Nakatsuka A., Eguchi J., Teshigawara S., Kanzaki M., Katayama A., Yamaguchi S., Takahashi N., Murakami K., Ogawa D., Sasaki S., Makino H., and Wada J., Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes, Metabolism. (2015) 64, no. 4, 489–497, https://doi.org/10.1016/j.metabol.2014.12.003.