Freeze Dried Quetiapine-Nicotinamide Binary Solid Dispersions: A New Strategy for Improving Physicochemical Properties and Ex Vivo Diffusion
Corresponding Author
Ahmed Mahmoud Abdelhaleem Ali
Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia tu.edu.sa
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt bsu.edu.eg
Search for more papers by this authorMayyas Mohammad Ahmad Al-Remawi
Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia tu.edu.sa
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan uop.edu.jo
Search for more papers by this authorCorresponding Author
Ahmed Mahmoud Abdelhaleem Ali
Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia tu.edu.sa
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt bsu.edu.eg
Search for more papers by this authorMayyas Mohammad Ahmad Al-Remawi
Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia tu.edu.sa
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan uop.edu.jo
Search for more papers by this authorAbstract
Improving the physicochemical properties and oral bioavailability of quetiapine fumarate (QF) enabling enhanced antipsychotic attributes are the main aims of this research. The freeze dried solid dispersion strategy was adopted using nicotinamide (NIC) as highly soluble coformer. The prepared dispersions were characterized using scanning electron microscopy (SEM) differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Static disc intrinsic dissolution rate and ex vivo diffusion through intestinal tissues were conducted and compared to pure quetiapine fumarate. The results demonstrated a highly soluble coamorphous system formed between quetiapine fumarate and nicotinamide at 1 : 3 molar ratio through H-bonding interactions. The results showed >14-fold increase in solubility of QF from the prepared dispersions. Increased intrinsic dissolution rate (from 0.28 to 0.603 mg cm−2 min−1) and faster flux rate through duodenum (from 0.027 to 0.041 mg cm−2 h−1) and jejunum (0.027 to 0.036 mg cm−2 h−1) were obtained. The prepared coamorphous dispersion proved to be effective in improving the drug solubility and dissolution rate and ex vivo diffusion. Therefore, binary coamorphous dispersions could be a promising solution to modify the physicochemical properties, raise oral bioavailability, and change the biopharmaceutics classification (BCS) of some active pharmaceutical ingredients.
References
- 1 Cutler A. J., Goldstein J. M., and Tumas J. A., Dosing and switching strategies for quetiapine fumarate, Clinical Therapeutics. (2002) 24, no. 2, 209–222, https://doi.org/10.1016/s0149-2918(02)85018-4, 2-s2.0-0036190196.
- 2 Krishnaraj K., Chandrasekar M. J. N., Nanjan M. J., Muralidharan S., and Manikandan D., Development of sustained release antipsychotic tablets using novel polysaccharide isolated from Delonix regia seeds and its pharmacokinetic studies, Saudi Pharmaceutical Journal. (2012) 20, no. 3, 239–248, https://doi.org/10.1016/j.jsps.2011.12.003, 2-s2.0-84863810869.
- 3 DeVane C. L. and Nemeroff C. B., Clinical pharmacokinetics of quetiapine: an atypical antipsychotic, Clinical Pharmacokinetics. (2001) 40, no. 7, 509–522, https://doi.org/10.2165/00003088-200140070-00003, 2-s2.0-17844379465.
- 4 Grimm S. W., Richtand N. M., Winter H. R., Stams K. R., and Reele S. B., Effects of cytochrome P450 3A modulators ketoconazole and carbamazepine on quetiapine pharmacokinetics, British Journal of Clinical Pharmacology. (2006) 61, no. 1, 58–69, 16390352, https://doi.org/10.1111/j.1365-2125.2005.02507.x, 2-s2.0-33644898140, 16390352.
- 5 Parsa M. A. and Bastani B., Quetiapine (Seroquel) in the treatment of psychosis in patients with Parkinson′s disease, Journal of Neuropsychiatry and Clinical Neurosciences. (1998) 10, no. 2, 216–219, 9608412, https://doi.org/10.1176/jnp.10.2.216, 2-s2.0-0031746779, 9608412.
- 6 Garbacz G., Kandzi A., Koziolek M., Mazgalski J., and Weitschies W., Release characteristics of quetiapine fumarate extended release tablets under biorelevant stress test conditions, AAPS PharmSciTech. (2014) 15, no. 1, 230–236, 24297600, https://doi.org/10.1208/s12249-013-0050-2, 2-s2.0-84893732907, 24297600.
- 7 Prodduturi S., Urman K. L., Otaigbe J. U., and Repka M. A., Stabilization of hot-melt extrusion formulations containing solid solutions using polymer blends, AAPS PharmSciTech. (2007) 8, no. 2, E152–E161, https://doi.org/10.1208/pt0804087, 2-s2.0-34547567297.
- 8 Gupta P. and Bansal A. K., Devitrification of amorphous celecoxib, AAPS PharmSciTech. (2005) 6, no. 2, E223–E230, https://doi.org/10.1208/pt060232, 2-s2.0-27744569226.
- 9 Lu Q. and Zografi G., Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP, Pharmaceutical Research. (1998) 15, no. 8, 1202–1206, https://doi.org/10.1023/a:1011983606606, 2-s2.0-0031664813.
- 10 Forster A., Hempenstall J., and Rades T., Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers, Journal of Pharmacy and Pharmacology. (2001) 53, no. 3, 303–315, 11291745, https://doi.org/10.1211/0022357011775532, 2-s2.0-0035095847, 11291745.
- 11 Rumondor A. C. F. and Taylor L. S., Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture, Molecular Pharmaceutics. (2010) 7, no. 2, 477–490, 20039693, https://doi.org/10.1021/mp9002283, 2-s2.0-77950549481, 20039693.
- 12 Sammour O. A., Hammad M. A., Megrab N. A., and Zidan A. S., Formulation and optimization of mouth dissolve tablets containing rofecoxib solid dispersion, AAPS PharmSciTech. (2006) 7, no. 2, E167–E175, 2-s2.0-33746060947.
- 13 Srinarong P., de Waard H., Frijlink H. W., and Hinrichs W. L. J., Improved dissolution behavior of lipophilic drugs by solid dispersions: the production process as starting point for formulation considerations, Expert Opinion on Drug Delivery. (2011) 8, no. 9, 1121–1140, https://doi.org/10.1517/17425247.2011.598147, 2-s2.0-80052083773.
- 14 Karavas E., Ktistis G., Xenakis A., and Georgarakis E., Miscibility behavior and formation mechanism of stabilized felodipine-polyvinylpyrrolidone amorphous solid dispersions, Drug Development and Industrial Pharmacy. (2005) 31, no. 6, 473–489, 16109621, https://doi.org/10.1080/03639040500215958, 2-s2.0-24644474682, 16109621.
- 15
Löbmann K.,
Jensen K. T.,
Laitinen R.,
Rades T.,
Strachan C. J., and
Grohganz H., Stabilized amorphous solid dispersions with small molecule excipients, Amorphous Solid Dispersions, 2014, Springer, Berlin, Germany, 613–636.
10.1007/978-1-4939-1598-9_21 Google Scholar
- 16 Masuda T., Yoshihashi Y., Yonemochi E., Fujii K., Uekusa H., and Terada K., Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir, International Journal of Pharmaceutics. (2012) 422, no. 1-2, 160–169, 22079714, https://doi.org/10.1016/j.ijpharm.2011.10.046, 2-s2.0-84655169574, 22079714.
- 17 Qian F., Wang J., Hartley R., Tao J., Haddadin R., Mathias N., and Hussain M., Solution behavior of PVP-VA and HPMC-AS-Based amorphous solid dispersions and their bioavailability implications, Pharmaceutical Research. (2012) 29, no. 10, 2766–2776, https://doi.org/10.1007/s11095-012-0695-7, 2-s2.0-84866740180.
- 18 Arora S. C., Sharma P. K., Irchhaiya R., Khatkar A., Singh N., and Gagoria J., Development, characterization and solubility study of solid dispersions of cefuroxime axetil by the solvent evaporation method, Journal of Advanced Pharmaceutical Technology and Research. (2010) 1, no. 3, 326–329, https://doi.org/10.4103/0110-5558.72427, 2-s2.0-79952906986.
- 19 Aggarwal A. K. and Jain S., Physicochemical characterization and dissolution study of solid dispersions of ketoconazole with nicotinamide, Chemical and Pharmaceutical Bulletin. (2011) 59, no. 5, 629–638, https://doi.org/10.1248/cpb.59.629, 2-s2.0-79955604485.
- 20 Chieng N., Aaltonen J., Saville D., and Rades T., Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation, European Journal of Pharmaceutics and Biopharmaceutics. (2009) 71, no. 1, 47–54, https://doi.org/10.1016/j.ejpb.2008.06.022, 2-s2.0-57349179076.
- 21 Allesø M., Chieng N., Rehder S., Rantanen J., Rades T., and Aaltonen J., Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen-cimetidine mixtures prepared by mechanical activation, Journal of Controlled Release. (2009) 136, no. 1, 45–53, https://doi.org/10.1016/j.jconrel.2009.01.027, 2-s2.0-67349087395.
- 22 Löbmann K., Strachan C., Grohganz H., Rades T., Korhonen O., and Laitinen R., Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions, European Journal of Pharmaceutics and Biopharmaceutics. (2012) 81, no. 1, 159–169, 22353489, https://doi.org/10.1016/j.ejpb.2012.02.004, 2-s2.0-84861092839, 22353489.
- 23 Wairkar S. and Gaud R., Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement, AAPS PharmSciTech. (2015) https://doi.org/10.1208/s12249-015-0371-4, 2-s2.0-84940094015.
- 24 Löbmann K., Laitinen R., Grohganz H., Gordon K. C., Strachan C., and Rades T., Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen, Molecular Pharmaceutics. (2011) 8, no. 5, 1919–1928, https://doi.org/10.1021/mp2002973, 2-s2.0-80053505508.
- 25 Paudel A., Worku Z. A., Meeus J., Guns S., and Van Den Mooter G., Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations, International Journal of Pharmaceutics. (2013) 453, no. 1, 253–284, https://doi.org/10.1016/j.ijpharm.2012.07.015, 2-s2.0-84877921505.
- 26 Laitinen R., Löbmann K., Strachan C. J., Grohganz H., and Rades T., Emerging trends in the stabilization of amorphous drugs, International Journal of Pharmaceutics. (2013) 453, no. 1, 65–79, https://doi.org/10.1016/j.ijpharm.2012.04.066, 2-s2.0-84884160394.
- 27 Ali A. M. A., Ali A. A., and Maghrabi I. A., Clozapine-carboxylic acid plasticized co-amorphous dispersions: preparation, characterization and solution stability evaluation, Acta Pharmaceutica. (2015) 65, no. 2, 133–146, https://doi.org/10.1515/acph-2015-0014, 2-s2.0-84930319074.
- 28 Shah B., Kakumanu V. K., and Bansal A. K., Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids, Journal of Pharmaceutical Sciences. (2006) 95, no. 8, 1641–1665, https://doi.org/10.1002/jps.20644, 2-s2.0-33747177115.
- 29 Newman A., Engers D., Bates S., Ivanisevic I., Kelly R. C., and Zografi G., Characterization of amorphous API:polymer mixtures using X-ray powder diffraction, Journal of Pharmaceutical Sciences. (2008) 97, no. 11, 4840–4856, https://doi.org/10.1002/jps.21352, 2-s2.0-55749088198.
- 30 Rewthong O., Soponronnarit S., Taechapairoj C., Tungtrakul P., and Prachayawarakorn S., Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice, Journal of Food Engineering. (2011) 103, no. 3, 258–264, https://doi.org/10.1016/j.jfoodeng.2010.10.022, 2-s2.0-78650730529.
- 31 Reyes-Gasga J., Martínez-Piñeiro E. L., Rodríguez-Álvarez G., Tiznado-Orozco G. E., García-García R., and Brès E. F., XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite, Materials Science and Engineering: C. (2013) 33, no. 8, 4568–4574, https://doi.org/10.1016/j.msec.2013.07.014, 2-s2.0-84885100281.
- 32 Belal F., Elbrashy A., Eid M., and Nasr J. J., Stability-indicating HPLC method for the determination of quetiapine: application to tablets and human plasma, Journal of Liquid Chromatography and Related Technologies. (2008) 31, no. 9, 1283–1298, https://doi.org/10.1080/10826070802019681, 2-s2.0-41849111960.
- 33 Yu L. X., Carlin A. S., Amidon G. L., and Hussain A. S., Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs, International Journal of Pharmaceutics. (2004) 270, no. 1-2, 221–227, 14726137, https://doi.org/10.1016/j.ijpharm.2003.10.016, 2-s2.0-0347021207, 14726137.
- 34 Nicklasson M. and Magnusson A. B., Program for evaluating drug dissolution kinetics in preformulation, Pharmaceutical Research. (1985) 2, no. 6, 262–266, 2-s2.0-0022402467.
- 35 Dixit P., Jain D. K., and Dumbwani J., Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus, Journal of Pharmacological and Toxicological Methods. (2012) 65, no. 1, 13–17, https://doi.org/10.1016/j.vascn.2011.11.001, 2-s2.0-84857036071.
- 36 Bayarı S., Ataç A., and Yurdakul Ş., Coordination behaviour of nicotinamide: an infrared spectroscopic study, Journal of Molecular Structure. (2003) 655, no. 1, 163–170, https://doi.org/10.1016/s0022-2860(03)00256-4, 2-s2.0-0037830661.
- 37 Lifshitz-Liron R., Kovalevski-Ishai E., Dolitzky B.-Z., Wizel S., and Lidor-Hadas R., Crystalline forms of quetiapine hemifumarate, Google Patents, 2003.
- 38 Zakeri-Milani P., Barzegar-Jalali M., Azimi M., and Valizadeh H., Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability, European Journal of Pharmaceutics and Biopharmaceutics. (2009) 73, no. 1, 102–106, https://doi.org/10.1016/j.ejpb.2009.04.015, 2-s2.0-68349157679.
- 39 Deshpande P., Holkar A., Gudaparthi O., and Kumar J., Such as 11-[4-[2-(2-hydroxyethoxy) ethyl]-1-pinerazinyl] dibenzo [b, f][1, 4] thiazepine (quetiapine) via reduction, cyclization, and deprotection, Google Patents, 2004.
- 40 Heinzelmann R. V., Purification of nicotinamide, Google Patents, 1951.
- 41 Greenhalgh D. J., Williams A. C., Timmins P., and York P., Solubility parameters as predictors of miscibility in solid dispersions, Journal of Pharmaceutical Sciences. (1999) 88, no. 11, 1182–1190, https://doi.org/10.1021/js9900856, 2-s2.0-0032726595.
- 42
Coates J., R. A. Meyers, Interpretation of infrared spectra, a practical approach, Encyclopedia of Analytical Chemistry, 2000, John Wiley & Sons, Chichester, UK, 10815–10837.
10.1002/9780470027318.a5606 Google Scholar
- 43 Liu L. and Wang X., Improved dissolution of oleanolic acid with ternary solid dispersions, AAPS PharmSciTech. (2007) 8, no. 4, 267–271, 2-s2.0-38049115564.
- 44 Ambike A. A., Mahadik K. R., and Paradkar A., Spray-dried amorphous solid dispersions of simvastatin, a low Tg drug: in vitro and in vivo evaluations, Pharmaceutical Research. (2005) 22, no. 6, 990–998, https://doi.org/10.1007/s11095-005-4594-z, 2-s2.0-21244445440.
- 45 Parthasaradhi R., Rathnakar R., Raji R. R., Muralidhara R., and Chander R. K. S., Polymorphs of quetiapine fumarate, Google Patents, 2007.
- 46 Rahman Z., Agarabi C., Zidan A. S., Khan S. R., and Khan M. A., Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide, AAPS PharmSciTech. (2011) 12, no. 2, 693–704, https://doi.org/10.1208/s12249-011-9603-4, 2-s2.0-84861137928.
- 47 Rowe W., Hurter P., Young C., Dinehart K., Verwijs M. J., Overhoff K., Grootenhuis P. D., Botfield M., and Grossi A., Pharmaceutical composition and administration thereof, Google Patents, 2009.
- 48 Issa M. G. and Ferraz H. G., Intrinsic dissolution as a tool for evaluating drug solubility in accordance with the biopharmaceutics classification system, Dissolution Technologies. (2011) 18, no. 3, 6–11, 2-s2.0-80052709171.
- 49 Amidon G. L., Lennernas H., Shah V. P., and Crison J. R., A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharmaceutical Research. (1995) 12, no. 3, 413–420, https://doi.org/10.1023/a:1016212804288, 2-s2.0-0028948839.
- 50 Yu L. X., Amidon G. L., Polli J. E., Zhao H., Mehta M. U., Conner D. P., Shah V. P., Lesko L. J., Chen M.-L., Lee V. H. L., and Hussain A. S., Biopharmaceutics classification system: the scientific basis for biowaiver extensions, Pharmaceutical Research. (2002) 19, no. 7, 921–925, https://doi.org/10.1023/a:1016473601633, 2-s2.0-0035997323.
- 51 Danilovski A., Ceric H., Siljkovic Z., Kwokal A., and Grebenar I., Salts of quetiapine, Google Patents, 2006.
- 52 Rahman Z., Zidan A. S., Samy R., Sayeed V. A., and Khan M. A., Improvement of physicochemical properties of an antiepileptic drug by salt engineering, AAPS PharmSciTech. (2012) 13, no. 3, 793–801, 22588676, https://doi.org/10.1208/s12249-012-9800-9, 2-s2.0-84866099781, 22588676.