Web-Based Data Integration and Interoperability for a Massive Spatial-Temporal Dataset of the Heihe River Basin EScience Framework
Qingchun Guo
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China cas.cn
University of Chinese Academy of Sciences, Beijing 100049, China ucas.ac.cn
Liaocheng University, Liaocheng, Shandong 252059, China lcu.edu.cn
Search for more papers by this authorCorresponding Author
Yaonan Zhang
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China cas.cn
Search for more papers by this authorZhenfang He
Liaocheng University, Liaocheng, Shandong 252059, China lcu.edu.cn
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China cas.cn
Search for more papers by this authorYufang Min
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China cas.cn
Search for more papers by this authorQingchun Guo
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China cas.cn
University of Chinese Academy of Sciences, Beijing 100049, China ucas.ac.cn
Liaocheng University, Liaocheng, Shandong 252059, China lcu.edu.cn
Search for more papers by this authorCorresponding Author
Yaonan Zhang
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China cas.cn
Search for more papers by this authorZhenfang He
Liaocheng University, Liaocheng, Shandong 252059, China lcu.edu.cn
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China cas.cn
Search for more papers by this authorYufang Min
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China cas.cn
Search for more papers by this authorAbstract
To solve the messy problem of data types and form a unified data-processing solution, data in the Heihe River Basin were first classified into five types to integrate them and achieve unified management of data and metadata, preventing the loss of metadata, in the data model of eScience framework. Considering many of the challenges that exist in the construction of the online spatial-temporal data integration and interoperability eScience platform, we used the open data interfaces and standards such as the Common DataModel (CDM) interface, common scientific data modelling (i.e., NetCDF, GRIB, and HDF), and Open Geospatial Consortium (OGC) standards. Through the eScience platform, we also provided online data processing tools by collecting free tools (e.g., NetCDF tool, quality control tool). This eScience platform enables researchers to make full use of scientific research information and results and facilitates collaboration, especially between the GIS community and other members of the earth science community, with the purpose of establishing an online platform of uniform spatial data from the Heihe River Basin via common scientific data modelling.
References
- 1 Knyazkov K. V., Kovalchuk S. V., Tchurov T. N., Maryin S. V., and Boukhanovsky A. V., CLAVIRE: e-Science infrastructure for data-driven computing, Journal of Computational Science. (2012) 3, no. 6, 504–510, 2-s2.0-84867227290, https://doi.org/10.1016/j.jocs.2012.08.006.
- 2 Lutz M., Sprado J., Klien E., Schubert C., and Christ I., Overcoming semantic heterogeneity in spatial data infrastructures, Computers & Geosciences. (2009) 35, no. 4, 739–752, https://doi.org/10.1016/j.cageo.2007.09.017, 2-s2.0-62849128420.
- 3 NRC, Grand Challenges in Environmental Sciences, 2001, National Academy of Sciences, Washington, DC, USA.
- 4 Simmhan Y. L., Plale B., and Gannon D., A survey of data provenance in e-science, ACM SIGMOD Record. (2005) 34, no. 3, 31–36, https://doi.org/10.1145/1084805.1084812, 2-s2.0-31444456909.
- 5 Goodall J. L., Horsburgh J. S., Whiteaker T. L., Maidment D. R., and Zaslavsky I., A first approach to web services for the National Water Information System, Environmental Modelling & Software. (2008) 23, no. 4, 404–411, 2-s2.0-36148937955, https://doi.org/10.1016/j.envsoft.2007.01.005.
- 6 Horsburgh J. S., Tarboton D. G., Piasecki M., Maidment D. R., Zaslavsky I., Valentine D., and Whitenack T., An integrated system for publishing environmental observations data, Environmental Modelling & Software. (2009) 24, no. 8, 879–888, https://doi.org/10.1016/j.envsoft.2009.01.002, 2-s2.0-76749136424.
- 7 Fiore S. and Aloisio G., Data management for eScience, Future Generation Computer Systems. (2011) 27, no. 3, 290–291, https://doi.org/10.1016/j.future.2010.08.012, 2-s2.0-78649276111.
- 8
Goodchild M. F., Citizens as sensors: the world of volunteered geography, GeoJournal. (2007) 69, no. 4, 211–221, 2-s2.0-36749037169, https://doi.org/10.1007/s10708-007-9111-y.
10.1007/s10708-007-9111-y Google Scholar
- 9 Li W., Yang C., Nebert D., Raskin R., Houser P., Wu H., and Li Z., Semantic-based web service discovery and chaining for building an Arctic spatial data infrastructure, Computers & Geosciences. (2011) 37, no. 11, 1752–1762, https://doi.org/10.1016/j.cageo.2011.06.024, 2-s2.0-80055005388.
- 10 Li L., Guardiola J., and Liu Y., Qualitative spatial representation and reasoning for data integration of ocean observing systems, Computers, Environment and Urban Systems. (2011) 35, no. 6, 474–484, https://doi.org/10.1016/j.compenvurbsys.2011.04.002, 2-s2.0-80053386233.
- 11 Mennis J. and Guo D. S., Spatial data mining and geographic knowledge discovery—an introduction, Computers, Environment and Urban Systems. (2009) 33, no. 6, 403–408, 2-s2.0-70449699746, https://doi.org/10.1016/j.compenvurbsys.2009.11.001.
- 12 Johnson G. W., Gaylord A. G., Franco J. C., Cody R. P., Brady J. J., Manley W., Dover M., Garcia-Lavigne D., Score R., and Tweedie C. E., Development of the Arctic Research Mapping Application (ARMAP): interoperability challenges and solutions, Computers & Geosciences. (2011) 37, no. 11, 1735–1742, https://doi.org/10.1016/j.cageo.2011.04.004, 2-s2.0-80054927961.
- 13 Foerster T., Lehto L., Sarjakoski T., Sarjakoski L. T., and Stoter J., Map generalization and schema transformation of geospatial data combined in a Web Service context, Computers, Environment and Urban Systems. (2010) 34, no. 1, 79–88, https://doi.org/10.1016/j.compenvurbsys.2009.06.003, 2-s2.0-72949107087.
- 14 Froude L. S. R., Storm tracking with remote data and distributed computing, Computers & Geosciences. (2008) 34, no. 11, 1621–1630, https://doi.org/10.1016/j.cageo.2007.11.004, 2-s2.0-48949088206.
- 15 Knyazkov K. V., Kovalchuk S. V., Tchurov T. N., Maryin S. V., and Boukhanovsky A. V., CLAVIRE: e-Science infrastructure for data-driven computing, Journal of Computational Science. (2012) 3, no. 6, 504–510, https://doi.org/10.1016/j.jocs.2012.08.006, 2-s2.0-84867227290.
- 16 Blanke T., Hedges M., and Dunn S., Arts and humanities e-science—current practices and future challenges, Future Generation Computer Systems. (2009) 25, no. 4, 474–480, https://doi.org/10.1016/j.future.2008.10.004, 2-s2.0-58149218300.
- 17 Díaz L., Granell C., Gould M., and Huerta J., Managing user-generated information in geospatial cyberinfrastructures, Future Generation Computer Systems. (2011) 27, no. 3, 304–314, https://doi.org/10.1016/j.future.2010.09.002, 2-s2.0-78649292695.
- 18 Giuliani G., Ray N., and Lehmann A., Grid-enabled Spatial Data Infrastructure for environmental sciences: challenges and opportunities, Future Generation Computer Systems. (2011) 27, no. 3, 292–303, https://doi.org/10.1016/j.future.2010.09.011, 2-s2.0-78649300210.
- 19
Tait M. G., Implementing geoportals: applications of distributed GIS, Computers, Environment and Urban Systems. (2005) 29, no. 1, 33–47, https://doi.org/10.1016/j.compenvurbsys.2004.05.011, 2-s2.0-8344242225.
10.1016/S0198-9715(04)00047-X Google Scholar
- 20 Deelman E., Gannon D., Shields M., and Taylor I., Workflows and e-Science: an overview of workflow system features and capabilities, Future Generation Computer Systems. (2009) 25, no. 5, 528–540, 2-s2.0-59849095285, https://doi.org/10.1016/j.future.2008.06.012.
- 21 Folino G., Forestiero A., Papuzzo G., and Spezzano G., A grid portal for solving geoscience problems using distributed knowledge discovery services, Future Generation Computer Systems. (2010) 26, no. 1, 87–96, 2-s2.0-69549087995, https://doi.org/10.1016/j.future.2009.08.002.
- 22 Pennington D. D., Collaborative, cross-disciplinary learning and co-emergent innovation in eScience teams, Earth Science Informatics. (2011) 4, no. 2, 55–68, https://doi.org/10.1007/s12145-011-0077-4, 2-s2.0-79960082718.
- 23 Rowley J., E-Government stakeholders—who are they and what do they want?, International Journal of Information Management. (2011) 31, no. 1, 53–62, https://doi.org/10.1016/j.ijinfomgt.2010.05.005, 2-s2.0-78650509819.
- 24 Chen N. C., Hu C. L., Chen Y., Wang C., and Gong J. Y., Using SensorML to construct a geoprocessing e-Science workflow model under a sensor web environment, Computers and Geosciences. (2012) 47, 119–129, https://doi.org/10.1016/j.cageo.2011.11.027, 2-s2.0-84864863106.
- 25 Borzacchiello M. T. and Craglia M., Estimating benefits of spatial data infrastructures: a case study on e-Cadastres, Computers, Environment and Urban Systems. (2013) 41, 276–288, 2-s2.0-84883559286, https://doi.org/10.1016/j.compenvurbsys.2012.05.004.
- 26
Wu J., The effect of ecological management in the upper reaches of Heihe River, Acta Ecologica Sinica. (2011) 31, no. 1, 1–7, https://doi.org/10.1016/j.chnaes.2010.11.001.
10.1016/j.chnaes.2010.11.001 Google Scholar
- 27 Millan-Almaraz J. R., Torres-Pacheco I., Duarte-Galvan C., Guevara-Gonzalez R. G., Contreras-Medina L. M., Romero-Troncoso R. D. J., and Rivera-Guillen J. R., FPGA-based wireless smart sensor for real-time photosynthesis monitoring, Computers and Electronics in Agriculture. (2013) 95, 58–69, https://doi.org/10.1016/j.compag.2013.04.009, 2-s2.0-84877319550.
- 28 Dahe Q., China′s meteorological science data sharing process and prospect, Scientific Chinese. (2004) 9, 18–20.
- 29 Plale B., Gannon D. A., Alameda J., Wilhelmson B., Hampton S., Rossi A., and Droegemeier K., Active management of scientific data, IEEE Internet Computing. (2005) 9, no. 1, 27–34, 2-s2.0-14844346810, https://doi.org/10.1109/mic.2005.4.
- 30
Lanter D. P., A lineage metadata approach to removing redundancy and propagating updates in a GIS database, Cartography and Geographic Information Science. (1994) 21, no. 2, 91–98, https://doi.org/10.1559/152304094782610215.
10.1559/152304094782610215 Google Scholar
- 31
Jerard R. B. and
Ryou O., NCML: a data exchange format for internet-based machining, International Journal of Computer Applications in Technology. (2006) 26, no. 1-2, 75–82, https://doi.org/10.1504/ijcat.2006.010083, 2-s2.0-33748431339.
10.1504/IJCAT.2006.010083 Google Scholar
- 32 Stock K., Stojanovic T., Reitsma F., Ou Y., Bishr M., Ortmann J., and Robertson A., To ontologise or not to ontologise: an information model for a geospatial knowledge infrastructure, Computers & Geosciences. (2012) 45, 98–108, https://doi.org/10.1016/j.cageo.2011.10.021, 2-s2.0-84863427307.
- 33 Castronova A. M., Goodall J. L., and Elag M. M., Models as web services using the Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard, Environmental Modelling & Software. (2013) 41, 72–83, https://doi.org/10.1016/j.envsoft.2012.11.010, 2-s2.0-84871646856.
- 34 Li X., Lua L., Yangc W., and Chenga G., Estimation of evapotranspiration in an arid region by remote sensing—a case study in the middle reaches of the Heihe River Basin, International Journal of Applied Earth Observation and Geoinformation. (2012) 17, no. 1, 85–93, https://doi.org/10.1016/j.jag.2011.09.008, 2-s2.0-84864520258.
- 35 Fox G. and Pierce M., Grids challenged by a web 2.0 and multicore sandwich, Concurrency and Computation: Practice and Experience. (2009) 21, no. 3, 265–280, https://doi.org/10.1002/cpe.1358, 2-s2.0-62349117765.
- 36 Stein L. D., Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges, Nature Reviews Genetics. (2008) 9, no. 9, 678–688, https://doi.org/10.1038/nrg2414, 2-s2.0-49949099664.
- 37 Signell R. P., Carniel S., Chiggiato J., Janekovic I., Pullen J., and Sherwood C. R., Collaboration tools and techniques for large model datasets, Journal of Marine Systems. (2008) 69, no. 1-2, 154–161, https://doi.org/10.1016/j.jmarsys.2007.02.013, 2-s2.0-36148984883.
- 38
Li Y. B.,
Brimicombe A. J., and
Ralphs M. P., Spatial data quality and sensitivity analysis in GIS and environmental modelling: the case of coastal oil spills, Computers, Environment and Urban Systems. (2000) 24, no. 2, 95–108, 2-s2.0-0034162975, https://doi.org/10.1016/s0198-9715(99)00048-4.
10.1016/S0198-9715(99)00048-4 Google Scholar