Morphology Effect on Enhanced Li+-Ion Storage Performance for Ni2+/3+ and/or Co2+/3+ Doped LiMnPO4 Cathode Nanoparticles
Young Jun Yun
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Division of Materials Science and Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Republic of Korea hanyang.ac.kr
Search for more papers by this authorMihye Wu
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorJin Kyu Kim
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorJi Young Ju
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorSun Sook Lee
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorKi Woong Kim
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorWoon Ik Park
Global Frontier R&D Center for Hybrid Interface Materials (HIM), Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
Search for more papers by this authorHa-Kyun Jung
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorCorresponding Author
Kwang Ho Kim
Global Frontier R&D Center for Hybrid Interface Materials (HIM), Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
School of Materials Science and Engineering, Pusan National University (PNU), Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea pusan.ac.kr
Search for more papers by this authorCorresponding Author
Jin-Seong Park
Division of Materials Science and Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Republic of Korea hanyang.ac.kr
Search for more papers by this authorCorresponding Author
Sungho Choi
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorYoung Jun Yun
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Division of Materials Science and Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Republic of Korea hanyang.ac.kr
Search for more papers by this authorMihye Wu
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorJin Kyu Kim
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorJi Young Ju
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorSun Sook Lee
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorKi Woong Kim
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorWoon Ik Park
Global Frontier R&D Center for Hybrid Interface Materials (HIM), Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
Search for more papers by this authorHa-Kyun Jung
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorCorresponding Author
Kwang Ho Kim
Global Frontier R&D Center for Hybrid Interface Materials (HIM), Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
School of Materials Science and Engineering, Pusan National University (PNU), Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea pusan.ac.kr
Search for more papers by this authorCorresponding Author
Jin-Seong Park
Division of Materials Science and Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Republic of Korea hanyang.ac.kr
Search for more papers by this authorCorresponding Author
Sungho Choi
Advanced Battery Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Republic of Korea krict.re.kr
Search for more papers by this authorAbstract
The electrochemical performance of Li(Mn, M)PO4 (M = Co2+/3+, Ni2+/3+) was investigated with regard to the particle morphology. Within a controlled chemical composition, Li(Mn0.92Co0.04Ni0.04)PO4, the resultant cathode exhibited somewhat spherical-shaped nanocrystalline particles and enhanced Li+-ion storage, which was even better than the undoped LiMnPO4, up to 16% in discharge capacity at 0.05 C. The outstanding electrochemical performance is attributed to the well-dispersed spherical-shaped particle morphology, which allows the fast Li+-ion migration during the electrochemical lithiation/delithiation process, especially at high current density.
References
- 1 Etacheri V., Marom R., Elazari R., Salitra G., and Aurbach D., Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science. (2011) 4, no. 9, 3243–3262, https://doi.org/10.1039/c1ee01598b, 2-s2.0-80052230656.
- 2 Bruce P. G., Scrosati B., and Tarascon J.-M., Nanomaterials for rechargeable lithium batteries, Angewandte Chemie—International Edition. (2008) 47, no. 16, 2930–2946, https://doi.org/10.1002/anie.200702505, 2-s2.0-49649105634.
- 3 Martha S. K., Markovsky B., Grinblat J., Gofer Y., Haik O., Zinigrad E., Aurbach D., Drezen T., Wang D., Deghenghi G., and Exnar I., LiMnPO4 as an advanced cathode material for rechargeable lithium batteries, Journal of the Electrochemical Society. (2009) 156, no. 7, A541–A552, https://doi.org/10.1149/1.3125765, 2-s2.0-65949120715.
- 4 Padhi A. K., Nanjundaswamy K. S., and Goodenough J. B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society. (1997) 144, no. 4, 1188–1194, https://doi.org/10.1149/1.1837571, 2-s2.0-0031124233.
- 5 Nakamura T., Miwa Y., Tabuchi M., and Yamada Y., Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties, Journal of the Electrochemical Society. (2006) 153, no. 6, A1108–A1114, https://doi.org/10.1149/1.2192732, 2-s2.0-33646456027.
- 6 Oh S.-M., Myung S.-T., Park J. B., Scrosati B., Amine K., and Sun Y.-K., Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries, Angewandte Chemie—International Edition. (2012) 51, no. 8, 1853–1856, https://doi.org/10.1002/anie.201107394, 2-s2.0-84863167103.
- 7 Pan X.-L., Xu C.-Y., Hong D., Fang H.-T., and Zhen L., Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode, Electrochimica Acta. (2013) 87, 303–308, https://doi.org/10.1016/j.electacta.2012.09.106, 2-s2.0-84870199431.
- 8 Yang G., Ni H., Liu H., Gao P., Ji H., Roy S., Pinto J., and Jiang X., The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe, Co, Gd), Journal of Power Sources. (2011) 196, no. 10, 4747–4755, https://doi.org/10.1016/j.jpowsour.2011.01.064, 2-s2.0-79952281688.
- 9 Devaraju M. K. and Honma I., Hydrothermal and solvothermal process towards development of LiMnPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries, Advanced Energy Materials. (2012) 2, no. 3, 284–297.
- 10 Choi D., Wang D., Bae I.-T., Xiao J., Nie Z., Wang W., Viswanathan V. V., Lee Y. J., Zhang J.-G., Graff G. L., Yang Z., and Liu J., LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode, Nano Letters. (2010) 10, no. 8, 2799–2805, https://doi.org/10.1021/nl1007085, 2-s2.0-77955574457.
- 11 Bramnik N. N. and Ehrenberg H., Precursor-based synthesis and electrochemical performance of LiMnPO4, Journal of Alloys and Compounds. (2008) 464, no. 1-2, 259–264, https://doi.org/10.1016/j.jallcom.2007.09.118, 2-s2.0-49749094030.
- 12 Pivko M., Bele M., Tchernychova E., Logar N. Z., Dominko R., and Gaberscek M., Synthesis of nanometric LiMnPO4 via a two-step technique, Chemistry of Materials. (2012) 24, no. 6, 1041–1047, https://doi.org/10.1021/cm203095d, 2-s2.0-84859122292.
- 13 Dinh H.-C., Mho S.-I., Kang Y., and Yeo I.-H., Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes, Journal of Power Sources. (2013) 244, 189–195, https://doi.org/10.1016/j.jpowsour.2013.01.191, 2-s2.0-84885948864.
- 14 Martha S. K., Grinblat J., Haik O., Zinigrad E., Drezen T., Miners J. H., Exnar I., Kay A., Markovsky B., and Aurbach D., LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries, Angewandte Chemie—International Edition. (2009) 48, no. 45, 8559–8563, https://doi.org/10.1002/anie.200903587, 2-s2.0-70350337784.
- 15 Qin Z., Zhou X., Xia Y., Tang C., and Liu Z., Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries, Journal of Materials Chemistry. (2012) 22, no. 39, 21144–21153, https://doi.org/10.1039/c2jm30821e, 2-s2.0-84870446354.
- 16 Hu J., Xie J., Zhao X., Yu H., Zhou X., Cao G., and Tu J., Doping effects on electronic conductivity and electrochemical performance of LiFePO4, Journal of Materials Science and Technology. (2009) 25, no. 3, 405–409, 2-s2.0-67549108382.
- 17 Lee J.-W., Park M.-S., Anass B., Park J.-H., Paik M.-S., and Doo S.-G., Electrochemical lithiation and delithiation of LiMnPO4: effect of cation substitution, Electrochimica Acta. (2010) 55, no. 13, 4162–4169, https://doi.org/10.1016/j.electacta.2010.02.097, 2-s2.0-77950052011.
- 18 Kim J. S., Seo D.-H., Kim S.-W., Park Y.-U., and Kang K., Mn based olivine electrode material with high power and energy, Chemical Communications. (2010) 46, no. 8, 1305–1307, https://doi.org/10.1039/b922133f, 2-s2.0-76349105962.
- 19 Wang L., Huang Y., Jiang R., and Jia D., Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating, Electrochimica Acta. (2007) 52, no. 24, 6778–6783, https://doi.org/10.1016/j.electacta.2007.04.104, 2-s2.0-34447095933.
- 20 Bilecka I. and Niederberger M., Microwave chemistry for inorganic nanomaterials synthesis, Nanoscale. (2010) 2, no. 8, 1358–1374, https://doi.org/10.1039/b9nr00377k, 2-s2.0-77955399020.
- 21 Li N., Hu C., and Cao M., Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith, Physical Chemistry Chemical Physics. (2013) 15, no. 20, 7685–7689, https://doi.org/10.1039/c3cp50778e, 2-s2.0-84877264128.
- 22 Liu Y., Zhao Y., Yu Y., Li J., Ahmad M., and Sun H., Hierarchical CoNiO2 structures assembled from mesoporous nanosheets with tunable porosity and their application as lithium-ion battery electrodes, New Journal of Chemistry. (2014) 38, no. 7, 3084–3091, https://doi.org/10.1039/c4nj00258j, 2-s2.0-84902675095.
- 23 Lee M.-H., Kim T.-H., Kim Y. S., and Song H.-K., Precipitation revisited: shape control of LiFePO4 nanoparticles by combinatorial precipitation, The Journal of Physical Chemistry C. (2011) 115, no. 25, 12255–12259, https://doi.org/10.1021/jp201476z, 2-s2.0-79959527310.
- 24 Bodoardo S., Gerbaldi C., Meligrana G., Tuel A., Enzo S., and Penazzi N., Optimisation of some parameters for the preparation of nanostructured LifePO4/C cathode, Ionics. (2009) 15, no. 1, 19–26, https://doi.org/10.1007/s11581-008-0259-3, 2-s2.0-64949140493.
- 25 Zhang L., Qu Q., Zhang L., Li J., and Zheng H., Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries, Journal of Materials Chemistry A. (2014) 2, no. 3, 711–719, https://doi.org/10.1039/c3ta14010e, 2-s2.0-84890259076.
- 26 Lu Q., Hutchings G. S., Zhou Y., Xin H. L., Zheng H., and Jiao F., Nanostructured flexible Mg-modified LiMnPO4 matrix as high-rate cathode materials for Li-ion batteries, Journal of Materials Chemistry A. (2014) 2, no. 18, 6368–6373, https://doi.org/10.1039/c4ta00654b, 2-s2.0-84898015559.
- 27 Yang M.-R. and Ke W.-H., The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M = Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells, Journal of the Electrochemical Society. (2008) 155, no. 10, A729–A732, https://doi.org/10.1149/1.2960933, 2-s2.0-51849152864.
- 28 Jang D., Palanisamy K., Kim Y., and Yoon W. S., Structural and electrochemical properties of doped liFe0.48Mn0.48Mg0.04PO4 as cathode material for lithium ion batteries, Journal of Electrochemical Science and Technology. (2013) 4, no. 3, 102–107, https://doi.org/10.5229/jecst.2013.4.3.102.
- 29 Chen G., Song X., and Richardson T. J., Electron microscopy study of the LiFePO4 to FePO4 phase transition, Electrochemical and Solid-State Letters. (2006) 9, no. 6, A295–A298, https://doi.org/10.1149/1.2192695, 2-s2.0-33645714163.
- 30 Morgan D., van der Ven A., and Ceder G., Li conductivity in (M = Mn, Fe, Co, Ni) olivine materials, Electrochemical and Solid-State Letters. (2004) 7, no. 2, A30–A32, https://doi.org/10.1149/1.1633511, 2-s2.0-1542329288.
- 31 Islam M. S., Driscoll D. J., Fisher C. A. J., and Slater P. R., Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material, Chemistry of Materials. (2005) 17, no. 20, 5085–5092, https://doi.org/10.1021/cm050999v, 2-s2.0-26944438352.
- 32 Wang D., Ouyang C., Dŕzen T., Exnar I., Kay A., Kwon N.-H., Gouerec P., Miners J. H., Wang M., and Grätzel M., Improving the electrochemical activity of LiMnPO4 via mn-site substitution, Journal of the Electrochemical Society. (2010) 157, no. 2, A225–A229, https://doi.org/10.1149/1.3271112, 2-s2.0-73849119932.
- 33 Gao X.-G., Hu G.-R., Peng Z.-D., and Du K., LiFePO4 cathode power with high energy density synthesized by water quenching treatment, Electrochimica Acta. (2009) 54, no. 21, 4777–4782, https://doi.org/10.1016/j.electacta.2008.12.024, 2-s2.0-65649148676.
- 34 Ni J. F., Zhou H. H., Chen J. T., and Zhang X. X., LiFePO4 doped with ions prepared by co-precipitation method, Materials Letters. (2005) 59, no. 18, 2361–2365, https://doi.org/10.1016/j.matlet.2005.02.080, 2-s2.0-19944379163.
- 35 Ni J. and Gao L., Effect of copper doping on LiMnPO4 prepared via hydrothermal route, Journal of Power Sources. (2011) 196, no. 15, 6498–6501, https://doi.org/10.1016/j.jpowsour.2011.03.073, 2-s2.0-79956354475.