Evaluation of Hydrophilized Graphite Felt for Electrochemical Heavy Metals Detection (Pb2+, Hg2+)
Laila Bouabdalaoui
Sorbonne Universités, UPMC Universités Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Search for more papers by this authorBenjamin Le Ouay
Sorbonne Universités, UPMC Universités Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Search for more papers by this authorThibaud Coradin
Sorbonne Universités, UPMC Universités Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Search for more papers by this authorCorresponding Author
Christel Laberty-Robert
Sorbonne Universités, UPMC Universités Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Search for more papers by this authorLaila Bouabdalaoui
Sorbonne Universités, UPMC Universités Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Search for more papers by this authorBenjamin Le Ouay
Sorbonne Universités, UPMC Universités Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Search for more papers by this authorThibaud Coradin
Sorbonne Universités, UPMC Universités Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Search for more papers by this authorCorresponding Author
Christel Laberty-Robert
Sorbonne Universités, UPMC Universités Paris 06, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, 75005 Paris, France upmc.fr
Search for more papers by this authorAbstract
Hydrophilized graphite felt has been used, for the first time, for the electrochemical detection of Hg2+ ions both as single metal species and via its simultaneous detection with Pb2+. To do so, square wave voltammetry (SWV) method was developed with alginate modified graphite felt as working electrode. The structure of the graphite felt such as its high porosity and specific surface area coupled with its good electrical conductivity allows achieving large peak currents via the SWV method, suggesting that the alginate coating helps to preconcentrate metals at the carbon surface. The as-described electrode has low cost, it is easy to manipulate, and the electrochemical analysis can be performed by simple immersion of the felt in the metal solution.
References
- 1 Caroli S., Forte G., Iamiceli A. L., and Galoppi B., Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques, Talanta. (1999) 50, no. 2, 327–336, https://doi.org/10.1016/s0039-9140(99)00025-9, 2-s2.0-0033552087.
- 2 Malekpour A., Hajialigol S., and Taher M. A., Study on solid-phase extraction and flame atomic absorption spectrometry for the selective determination of cadmium in water and plant samples with modified clinoptilolite, Journal of Hazardous Materials. (2009) 172, no. 1, 229–233, https://doi.org/10.1016/j.jhazmat.2009.06.163, 2-s2.0-70350532160.
- 3 Zeng W., Chen Y., Cui H., Wu F., Zhu Y., and Fritz J. S., Single-column method of ion chromatography for the determination of common cations and some transition metals, Journal of Chromatography A. (2006) 1118, no. 1, 68–72, https://doi.org/10.1016/j.chroma.2006.01.065, 2-s2.0-33744509097.
- 4 Li J., Guo S., Zhai Y., and Wang E., High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film, Analytica Chimica Acta. (2009) 649, no. 2, 196–201, https://doi.org/10.1016/j.aca.2009.07.030, 2-s2.0-68749083534.
- 5 Bagheri H., Afkhami A., Khoshsafar H., Rezaei M., and Shirzadmehr A., Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode, Sensors and Actuators, B: Chemical. (2013) 186, 451–460, https://doi.org/10.1016/j.snb.2013.06.051, 2-s2.0-84880094692.
- 6 Honeychurch K. C. and Hart J. P., Screen-printed electrochemical sensors for monitoring metal pollutants, Trends in Analytical Chemistry. (2003) 22, no. 7-8, 456–469, https://doi.org/10.1016/s0165-9936(03)00703-9, 2-s2.0-0142165715.
- 7 Economou A., Bismuth-film electrodes: recent developments and potentialities for electroanalysis, TrAC—Trends in Analytical Chemistry. (2005) 24, no. 4, 334–340, https://doi.org/10.1016/j.trac.2004.11.006, 2-s2.0-16244395486.
- 8 Liu C., Fan Y. Y., Liu M., Cong H. T., Cheng H. M., and Dresselhaus M. S., Hydrogen storage in single-walled carbon nanotubes at room temperature, Science. (1999) 286, no. 5442, 1127–1129, https://doi.org/10.1126/science.286.5442.1127, 2-s2.0-0033527691.
- 9 Zhu H., Wei J., Wang K., and Wu D., Applications of carbon materials in photovoltaic solar cells, Solar Energy Materials and Solar Cells. (2009) 93, no. 9, 1461–1470, https://doi.org/10.1016/j.solmat.2009.04.006, 2-s2.0-67649403129.
- 10 Xin S., Guo Y.-G., and Wan L.-J., Nanocarbon networks for advanced rechargeable lithium batteries, Accounts of Chemical Research. (2012) 45, no. 10, 1759–1769, https://doi.org/10.1021/ar300094m, 2-s2.0-84867566517.
- 11 Bouabdalaoui L., Legrand L., Féron D., and Chaussé A., Improved performance of anode with iron/sulfur-modified graphite in microbial fuel cell, Electrochemistry Communications. (2013) 28, 1–4, https://doi.org/10.1016/j.elecom.2012.11.023, 2-s2.0-84871369578.
- 12 Cercado-Quezada B., Delia M.-L., and Bergel A., Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes, Electrochemistry Communications. (2011) 13, no. 5, 440–443, https://doi.org/10.1016/j.elecom.2011.02.015, 2-s2.0-79954592326.
- 13 Erable B., Etcheverry L., and Bergel A., Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment, Electrochemistry Communications. (2009) 11, no. 3, 619–622, https://doi.org/10.1016/j.elecom.2008.12.058, 2-s2.0-60549096841.
- 14 Aragay G. and Merkoçi A., Nanomaterials application in electrochemical detection of heavy metals, Electrochimica Acta. (2012) 84, 49–61, https://doi.org/10.1016/j.electacta.2012.04.044, 2-s2.0-84869083030.
- 15 Gupta V. K., Yola M. L., Atar N., Ustundağ Z., and Solak A. O., A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface, Electrochimica Acta. (2013) 112, 541–548, https://doi.org/10.1016/j.electacta.2013.09.011, 2-s2.0-84884969716.
- 16 Morton J., Havens N., Mugweru A., and Wanekaya A. K., Detection of trace heavy metal ions using carbon nanotube-modified electrodes, Electroanalysis. (2009) 21, no. 14, 1597–1603, https://doi.org/10.1002/elan.200904588, 2-s2.0-69949160432.
- 17 Oztekin Y., Ramanaviciene A., Ryskevic N., Yazicigil Z., Üstündağ Z., Solak A. O., and Ramanavicius A., 1,10-Phenanthroline modified glassy carbon electrode for voltammetric determination of cadmium(II) ions, Sensors and Actuators B: Chemical. (2011) 157, no. 1, 146–153, https://doi.org/10.1016/j.snb.2011.03.041, 2-s2.0-79959679837.
- 18 Feier B., Floner D., Cristea C., Bodoki E., Sandulescu R., and Geneste F., Flow electrochemical analyses of zinc by stripping voltammetry on graphite felt electrode, Talanta. (2012) 98, 152–156, https://doi.org/10.1016/j.talanta.2012.06.063, 2-s2.0-84865688724.
- 19 Nasraoui R., Floner D., and Geneste F., Analytical performances of a flow electrochemical sensor for preconcentration and stripping voltammetry of metal ions, Journal of Electroanalytical Chemistry. (2009) 629, no. 1-2, 30–34, https://doi.org/10.1016/j.jelechem.2009.01.024, 2-s2.0-62949188325.
- 20 Nasraoui R., Floner D., and Geneste F., Improvement in performance of a flow electrochemical sensor by using carbamoyl-arms polyazamacrocycle for the preconcentration of lead ions onto the electrode, Electrochemistry Communications. (2010) 12, no. 1, 98–100, https://doi.org/10.1016/j.elecom.2009.10.045, 2-s2.0-72149129177.
- 21 Nasraoui R., Floner D., Paul-Roth C., and Geneste F., Flow electroanalytical system based on cyclam-modified graphite felt electrodes for lead detection, Journal of Electroanalytical Chemistry. (2010) 638, no. 1, 9–14, https://doi.org/10.1016/j.jelechem.2009.10.028, 2-s2.0-72149121319.
- 22 Feier B., Floner D., Cristea C., Sandulescu R., and Geneste F., Development of a novel flow sensor for copper trace analysis by electrochemical reduction of 4-methoxybenzene diazonium salt, Electrochemistry Communications. (2013) 31, 13–15, https://doi.org/10.1016/j.elecom.2013.02.025, 2-s2.0-84875073894.
- 23 Le Ouay B., Coradin T., and Laberty-Robert C., Silica-carbon hydrogels as cytocompatible bioelectrodes, Journal of Materials Chemistry B. (2013) 1, no. 5, 606–609, https://doi.org/10.1039/c2tb00312k, 2-s2.0-84876521670.
- 24 Le Ouay B., Coradin T., and Laberty-Robert C., Mass transport properties of silicified graphite felt electrodes, The Journal of Physical Chemistry C. (2013) 117, no. 31, 15918–15923, https://doi.org/10.1021/jp403990m, 2-s2.0-84881450528.
- 25 Martín-Yerga D., González-García M. B., and Costa-García A., Electrochemical determination of mercury: a review, Talanta. (2013) 116, 1091–1104, https://doi.org/10.1016/j.talanta.2013.07.056, 2-s2.0-84884229951.
- 26 Li J., Guo S., Zhai Y., and Wang E., A graphene-based electrochemical sensor for rapid determination of phenols in water, Analytica Chimica Acta. (2009) 649, 196–201.
- 27 Yoon O. J., Kim C. H., Sohn I.-Y., and Lee N.-E., Toxicity analysis of graphene nanoflakes by cell-based electrochemical sensing using an electrode modified with nanocomposite of graphene and Nafion, Sensors and Actuators B: Chemical. (2013) 188, 454–461, https://doi.org/10.1016/j.snb.2013.07.039, 2-s2.0-84881344031.
- 28 Mazloum-Ardakani M., Rajabi H., and Bietollahi H., Electrocatalytic oxidation of Cysteine by indigo carmine modified glassy carbon electrode, Journal of the Argentine Chemical Society. (2009) 97, no. 2, 106–115, 2-s2.0-79959763476.
- 29 Yang S., Guo D., Su L., Yu P., Li D., Ye J., and Mao L., A facile method for preparation of graphene film electrodes with tailor-made dimensions with Vaseline as the insulating binder, Electrochemistry Communications. (2009) 11, no. 10, 1912–1915, https://doi.org/10.1016/j.elecom.2009.08.020, 2-s2.0-70349798623.
- 30 Lin W.-J., Liao C.-S., Jhang J.-H., and Tsai Y.-C., Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide, Electrochemistry Communications. (2009) 11, no. 11, 2153–2156, https://doi.org/10.1016/j.elecom.2009.09.018, 2-s2.0-70350567830.
- 31 Yin H., Ma Q., Zhou Y., Ai S., and Zhu L., Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode, Electrochimica Acta. (2010) 55, no. 23, 7102–7108, https://doi.org/10.1016/j.electacta.2010.06.072, 2-s2.0-77957374547.
- 32 Tang L., Wang Y., Li Y., Feng H., Lu J., and Li J., Preparation, structure, and electrochemical properties of reduced graphene sheet films, Advanced Functional Materials. (2009) 19, no. 17, 2782–2789, https://doi.org/10.1002/adfm.200900377, 2-s2.0-69949189987.
- 33 Chen H., Wang Y., Liu Y., Wang Y., Qi L., and Dong S., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film, Electrochemistry Communications. (2007) 9, no. 3, 469–474, https://doi.org/10.1016/j.elecom.2006.10.019, 2-s2.0-33847632458.
- 34 Yola M. L., Atar N., Qureshi M. S., Üstündag Z., and Solak A. O., Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination, Sensors and Actuators B: Chemical. (2012) 171-172, 1207–1215, https://doi.org/10.1016/j.snb.2012.06.082, 2-s2.0-84864277445.
- 35 Validation of analytical procedures: ICH harmonised tripartite guideline, Proceedings of the International Conference on Harmonisationof Technical Requirements for Registration of Pharmacueticals for Human Use, 2005.
- 36 Bayramoğlu G., Tuzun I., Celik G., Yilmaz M., and Arica M. Y., Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads, International Journal of Mineral Processing. (2006) 81, no. 1, 35–43, https://doi.org/10.1016/j.minpro.2006.06.002, 2-s2.0-33748797403.
- 37 Li D., Jia J., and Wang J., Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers–Nafion composite modified bismuth film electrode, Talanta. (2010) 83, no. 2, 332–336, https://doi.org/10.1016/j.talanta.2010.09.024, 2-s2.0-78650024867.
- 38 Palchetti I., Laschi S., and Mascini M., Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals, Analytica Chimica Acta. (2005) 530, no. 1, 61–67, https://doi.org/10.1016/j.aca.2004.08.065, 2-s2.0-13444292032.
- 39 Xu R.-X., Yu X.-Y., Gao C., Jiang Y.-J., Han D.-D., Liu J.-H., and Huang X.-J., Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: the use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection, Analytica Chimica Acta. (2013) 790, 31–38, https://doi.org/10.1016/j.aca.2013.06.040, 2-s2.0-84880603051.