Applications of Nanostructured Carbon Materials in Constructions: The State of the Art
Shu-Nan Lu
College of Civil Engineering and Architecture, Harbin University of Science and Technology, Harbin 150080, China hrbust.edu.cn
Search for more papers by this authorCorresponding Author
Ning Xie
School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China hit.edu.cn
School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China hit.edu.cn
Search for more papers by this authorLi-Chao Feng
School of Mechanical Engineering, Huaihai Institute of Technology and Jiangsu Marine Resources Development Research Institute, Lianyungang 222005, China hhit.edu.cn
Search for more papers by this authorJing Zhong
School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China hit.edu.cn
Search for more papers by this authorShu-Nan Lu
College of Civil Engineering and Architecture, Harbin University of Science and Technology, Harbin 150080, China hrbust.edu.cn
Search for more papers by this authorCorresponding Author
Ning Xie
School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China hit.edu.cn
School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China hit.edu.cn
Search for more papers by this authorLi-Chao Feng
School of Mechanical Engineering, Huaihai Institute of Technology and Jiangsu Marine Resources Development Research Institute, Lianyungang 222005, China hhit.edu.cn
Search for more papers by this authorJing Zhong
School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China hit.edu.cn
Search for more papers by this authorAbstract
The most recent studies on the applications of nanostructured carbon materials, including carbon nanotubes, carbon nanofibers, and graphene oxides, in constructions are presented. First, the preparation of nanostructured carbon/infrastructure material composites is summarized. This part is mainly focused on how the nanostructured carbon materials were mixed with cementitious or asphalt matrix to realize a good dispersion condition. Several methods, including high speed melting mixing, surface treatment, and aqueous solution with surfactants and sonication, were introduced. Second, the applications of the carbon nanostructured materials in constructions such as mechanical reinforcement, self-sensing detectors, self-heating element for deicing, and electromagnetic shielding component were systematically reviewed. This paper not only helps the readers understand the preparation process of the carbon nanostructured materials/infrastructure material composites but also sheds some light on the state-of-the-art applications of carbon nanostructured materials in constructions.
References
- 1 Hanus M. J. and Harris A. T., Nanotechnology innovations for the construction industry, Progress in Materials Science. (2013) 58, no. 7, 1056–1102, https://doi.org/10.1016/j.pmatsci.2013.04.001, 2-s2.0-84878609204.
- 2 Chung D. D. L., Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon. (2012) 50, no. 9, 3342–3353, https://doi.org/10.1016/j.carbon.2012.01.031, 2-s2.0-84860685806.
- 3 Chen S. J., Collins F. G., Macleod A. J. N., Pan Z., Duan W. H., and Wang C. M., Carbon nanotube-cement composites: a retrospect, The IES Journal Part A: Civil & Structural Engineering. (2011) 4, no. 4, 254–265, https://doi.org/10.1080/19373260.2011.615474, 2-s2.0-84859410752.
- 4 Liu Y. and Kumar S., Polymer/carbon nanotube nano composite fibers-A review, ACS Applied Materials & Interfaces. (2014) 6, no. 9, 6069–6087, https://doi.org/10.1021/am405136s, 2-s2.0-84896962003.
- 5 Walker L. S., Marotto V. R., Rafiee M. A., Koratkar N., and Corral E. L., Toughening in graphene ceramic composites, ACS Nano. (2011) 5, no. 4, 3182–3190, https://doi.org/10.1021/nn200319d, 2-s2.0-79955406290.
- 6 Parveen S., Rana S., and Fangueiro R., A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites, Journal of Nanomaterials. (2013) 2013, 19, 710175, https://doi.org/10.1155/2013/710175, 2-s2.0-84883147531.
- 7 Yan S. J., Dai S. L., Zhang X. Y., Yang C., Hong Q. H., Chen J. Z., and Lin Z. M., Investigating aluminum alloy reinforced by graphene nanoflakes, Materials Science and Engineering: A. (2014) 612, 440–444, https://doi.org/10.1016/j.msea.2014.06.077.
- 8 Yu X. and Kwon E., A carbon nanotube/cement composite with piezoresistive properties, Smart Materials and Structures. (2009) 18, no. 5, 055010, https://doi.org/10.1088/0964-1726/18/5/055010, 2-s2.0-68549128913.
- 9 Konsta-Gdoutos M. S., Metaxa Z. S., and Shah S. P., Highly dispersed carbon nanotube reinforced cement based materials, Cement and Concrete Research. (2010) 40, no. 7, 1052–1059, https://doi.org/10.1016/j.cemconres.2010.02.015, 2-s2.0-77953131473.
- 10 Babak F., Abolfazl H., Alimorad R., and Parviz G., Preparation and mechanical properties of graphene oxide: cement nanocomposites, The Scientific World Journal. (2014) 2014, 10, 276323, https://doi.org/10.1155/2014/276323, 2-s2.0-84893853955.
- 11 Han B., Yu X., and Kwon E., A self-sensing carbon nanotube/cement composite for traffic monitoring, Nanotechnology. (2009) 20, no. 44, 445501, https://doi.org/10.1088/0957-4484/20/44/445501.
- 12 Zuo J., Yao W., Liu X., and Qin J., Sensing properties of carbon nanotube-carbon fiber/cement nanocomposites, Journal of Testing and Evaluation. (2012) 40, no. 5, 838–843, https://doi.org/10.1520/jte20120092, 2-s2.0-84866601828.
- 13 Li H., Zhang Q., and Xiao H., Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites, Cold Regions Science and Technology. (2013) 86, 22–35, https://doi.org/10.1016/j.coldregions.2012.10.007, 2-s2.0-84870842839.
- 14 Nasibulina L. I., Anoshkin I. V., Nasibulin A. G., Cwirzen A., Penttala V., and Kauppinen E. I., Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite, Journal of Nanomaterials. (2012) 2012, 6, 169262, https://doi.org/10.1155/2012/169262, 2-s2.0-84859759979.
- 15
Abu Al-Rub R. K.,
Tyson B. M.,
Yazdanbakhsh A., and
Grasley Z., Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers, Journal of Nanomechanics and Micromechanics. (2012) 2, no. 1, 1–6, https://doi.org/10.1061/(asce)nm.2153-5477.0000041, 2-s2.0-84859083977.
10.1061/(ASCE)NM.2153-5477.0000041 Google Scholar
- 16 Collins F., Lambert J., and Duan W. H., The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures, Cement and Concrete Composites. (2012) 34, no. 2, 201–207, https://doi.org/10.1016/j.cemconcomp.2011.09.013, 2-s2.0-84655170170.
- 17 Sobolkina A., Mechtcherine V., Khavrus V., Maier D., Mende M., Ritschel M., and Leonhardt A., Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix, Cement and Concrete Composites. (2012) 34, no. 10, 1104–1113, https://doi.org/10.1016/j.cemconcomp.2012.07.008, 2-s2.0-84866370398.
- 18 Metaxa Z. S., Konsta-Gdoutos M. S., and Shah S. P., Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency, Cement and Concrete Composites. (2013) 36, no. 1, 25–32, https://doi.org/10.1016/j.cemconcomp.2012.10.009, 2-s2.0-84873408543.
- 19 Marcano D. C., Kosynkin D. V., Berlin J. M., Sinitskii A., Sun Z., Slesarev A., Alemany L. B., Lu W., and Tour J. M., Improved synthesis of graphene oxide, ACS Nano. (2010) 4, no. 8, 4806–4814, https://doi.org/10.1021/nn1006368, 2-s2.0-78650092372.
- 20 Gong K., Pan Z., Korayem A. H., Qiu L., Li D., Collins F., Wang C., and Duan W. H., Reinforcing effects of graphene oxide on portland cement paste, Journal of Materials in Civil Engineering. (2014) 27, no. 2 A4014010, 1–6, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125.
- 21 Motlagh A. A., Kiasat A., Mirzaei E., and Birgani F. O., Bitumen modification using carbon nanotubes, World Applied Sciences Journal. (2012) 18, no. 4, 594–599, 2-s2.0-84865265955.
- 22 Khattak M. J., Khattab A., Rizvi H. R., and Zhang P., The impact of carbon nano-fiber modification on asphalt binder rheology, Construction and Building Materials. (2012) 30, 257–264, https://doi.org/10.1016/j.conbuildmat.2011.12.022, 2-s2.0-84855171272.
- 23 Hasan Z., Kamran R. O., Mohammad F., Ahmad G., and Hosein F., Evaluation of different conditions on the mixing bitumen and carbon nano-tubes, International Journal of Civil & Environmental Engineering. (2012) 12, 53–59.
- 24 Santagata E., Baglieri O., Tsantilis L., and Dalmazzo D., Evaluation of self healing properties of bituminous binders taking into account steric hardening effects, Construction and Building Materials. (2013) 41, 60–67, https://doi.org/10.1016/j.conbuildmat.2012.11.118.
- 25 Yao H., You Z., Li L., Goh S. W., Lee C. H., Yap Y. K., and Shi X., Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy, Construction and Building Materials. (2013) 38, 327–337, https://doi.org/10.1016/j.conbuildmat.2012.08.004, 2-s2.0-84866635878.
- 26 Khattak M. J., Khattab A., and Rizvi H. R., Characterization of carbon nano-fiber modified hot mix asphalt mixtures, Construction and Building Materials. (2013) 40, 738–745, https://doi.org/10.1016/j.conbuildmat.2012.11.034, 2-s2.0-84871799928.
- 27 Khattak M. J., Khattab A., Zhang P., Rizvi H. R., and Pesacreta T., Microstructure and fracture morphology of carbon nano-fiber modified asphalt and hot mix asphalt mixtures, Materials and Structures. (2013) 46, no. 12, 2045–2057, https://doi.org/10.1617/s11527-013-0035-3, 2-s2.0-84888201301.
- 28 Yazdanbakhsh A. and Grasley Z., Utilization of silica fume to stabilize the dispersion of carbon nanofilaments in cement paste, Journal of Materials in Civil Engineering. (2014) 26, no. 7, 06014010, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001016.
- 29 Chaipanich A., Nochaiya T., Wongkeo W., and Torkittikul P., Compressive strength and microstructure of carbon nanotubes-fly ash cement composites, Materials Science and Engineering A. (2010) 527, no. 4-5, 1063–1067, https://doi.org/10.1016/j.msea.2009.09.039, 2-s2.0-72549096717.
- 30 Tyson B. M., Abu Al-Rub R. K., Yazdanbakhsh A., and Grasley Z., Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials, Journal of Materials in Civil Engineering. (2011) 23, no. 7, 1028–1035, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000266, 2-s2.0-79960148979.
- 31 Yazdanbakhsh A., Grasley Z., Tyson B., and Abu Al-Rub R., Challenges and benefits of utilizing carbon nanofilaments in cementitious materials, Journal of Nanomaterials. (2012) 2012, 8, 371927, https://doi.org/10.1155/2012/371927, 2-s2.0-84864911570.
- 32 Metaxa Z. S., Seo J.-W. T., Konsta-Gdoutos M. S., Hersam M. C., and Shah S. P., Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials, Cement and Concrete Composites. (2012) 34, no. 5, 612–617, https://doi.org/10.1016/j.cemconcomp.2012.01.006, 2-s2.0-84859156071.
- 33 Siddique R. and Mehta A., Effect of carbon nanotubes on properties of cement mortars, Construction and Building Materials. (2014) 50, 116–129, https://doi.org/10.1016/j.conbuildmat.2013.09.019, 2-s2.0-84885997640.
- 34 Kumar S., Kolay P., Malla S., and Mishra S., Effect of multiwalled carbon nanotubes on mechanical strength of cement paste, Journal of Materials in Civil Engineering. (2012) 24, no. 1, 84–91, https://doi.org/10.1061/(asce)mt.1943-5533.0000350, 2-s2.0-84863159250.
- 35 Hu Y., Luo D., Li P., Li Q., and Sun G., Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes, Construction and Building Materials. (2014) 70, 332–338, https://doi.org/10.1016/j.conbuildmat.2014.07.077.
- 36 Paula J. N., Calixto J. M., Ladeira L. O., Ludvig P., Souza T. C. C., Rocha J. M., and de Melo E. A. A., Mechanical and rheological behavior of oil-well cement slurries produced with clinker containing carbon nanotubes, Journal of Petroleum Science and Engineering. (2014) 122, 274–279, https://doi.org/10.1016/j.petrol.2014.07.020.
- 37 Abu Al-Rub R. K., Ashour A. I., and Tyson B. M., On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites, Construction and Building Materials. (2012) 35, 647–655, https://doi.org/10.1016/j.conbuildmat.2012.04.086, 2-s2.0-84861605934.
- 38 Wang B., Zhang T., and Han Y., Reinforcement of surface-modified multi-walled carbon nanotubes on cement-based composites, Advances in Cement Research. (2014) 26, no. 2, 77–84, https://doi.org/10.1680/adcr.12.00074, 2-s2.0-84900867057.
- 39 Ziari H., Farahani H., Goli A., and Galooyak S. S., The investigation of the impact of carbon nano tube on bitumen and HMA performance, Petroleum Science and Technology. (2014) 32, no. 17, 2102–2108, https://doi.org/10.1080/10916466.2013.763827.
- 40 Santagata E., Baglieri O., Tsantilis L., and Chiappinelli G., Fatigue properties of bituminous binders reinforced with carbon nanotubes, International Journal of Pavement Engineering. (2015) 16, no. 1, 80–90, https://doi.org/10.1080/10298436.2014.923099.
- 41 Lv S., Ma Y., Qiu C., Sun T., Liu J., and Zhou Q., Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites, Construction and Building Materials. (2013) 49, 121–127, https://doi.org/10.1016/j.conbuildmat.2013.08.022, 2-s2.0-84883815012.
- 42 Azhari F. and Banthia N., Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing, Cement and Concrete Composites. (2012) 34, no. 7, 866–873, https://doi.org/10.1016/j.cemconcomp.2012.04.007, 2-s2.0-84861345555.
- 43 Han B., Zhang K., Yu X., Kwon E., and Ou J., Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites, Cement and Concrete Composites. (2012) 34, no. 6, 794–800, https://doi.org/10.1016/j.cemconcomp.2012.02.012, 2-s2.0-84859921096.
- 44 Andrawes B. and Chan L. Y., Compression and tension stress-sensing of carbon nanotube-reinforced cement, Magazine of Concrete Research. (2012) 64, no. 3, 253–258, https://doi.org/10.1680/macr.10.00182, 2-s2.0-84861813272.
- 45 Materazzi A. L., Ubertini F., and D′Alessandro A., Carbon nanotube cement-based transducers for dynamic sensing of strain, Cement and Concrete Composites. (2013) 37, no. 1, 2–11, https://doi.org/10.1016/j.cemconcomp.2012.12.013, 2-s2.0-84874659826.
- 46 Kim H. K., Park I. S., and Lee H. K., Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio, Composite Structures. (2014) 116, 713–719.
- 47 Han B., Yu X., and Ou J., Effect of water content on the piezoresistivity of MWNT/cement composites, Journal of Materials Science. (2010) 45, no. 14, 3714–3719, https://doi.org/10.1007/s10853-010-4414-7, 2-s2.0-77953293828.
- 48
Han B.,
Yu X., and
Ou J., Multifunctional and smart carbon nanotube reinforced cement-based materials, Nanotechnology in Civil Infrastructure, 2011, Springer, Berlin, Germany, 1–47, https://doi.org/10.1007/978-3-642-16657-0_1.
10.1007/978-3-642-16657-0_1 Google Scholar
- 49 Han B., Zhang K., Burnham T., Kwon E., and Yu X., Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection, Smart Materials and Structures. (2013) 22, no. 1, 015020, https://doi.org/10.1088/0964-1726/22/1/015020, 2-s2.0-84871576740.
- 50 Han B., Zhang K., Yu X., Kwon E., and Ou J., Fabrication of Piezoresistive CNT/CNF Cementitious Composites with Superplasticizer as Dispersant, Journal of Materials in Civil Engineering. (2012) 24, no. 6, 658–665, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000435, 2-s2.0-84861841673.
- 51 Saafi M., Andrew K., Tang P. L., McGhon D., Taylor S., Rahman M., Yang S., and Zhou X., Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites, Construction and Building Materials. (2013) 49, 46–55, https://doi.org/10.1016/j.conbuildmat.2013.08.007, 2-s2.0-84883520554.
- 52 Shi X., Xie N., Fortune K., and Gong J., Durability of steel reinforced concrete in chloride environments: an overview, Construction and Building Materials. (2012) 30, 125–138, https://doi.org/10.1016/j.conbuildmat.2011.12.038, 2-s2.0-84855168946.
- 53 Yehia S., Tuan C. Y., Ferdon D., and Chen B., Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties, ACI Materials Journal. (2000) 97, no. 2, 172–181, 2-s2.0-0034161181.
- 54 Yang T., Yang Z. J., Singla M., Song G., and Li Q., Experimental study on carbon fiber tape-based deicing technology, Journal of Cold Regions Engineering. (2012) 26, no. 2, 55–70, https://doi.org/10.1061/(asce)cr.1943-5495.0000038, 2-s2.0-84862136760.
- 55 Wu S., Mo L., Shui Z., and Chen Z., Investigation of the conductivity of asphalt concrete containing conductive fillers, Carbon. (2005) 43, no. 7, 1358–1363, https://doi.org/10.1016/j.carbon.2004.12.033, 2-s2.0-17844373242.
- 56 Zhao H., Wu Z., Wang S., Zheng J., and Che G., Concrete pavement deicing with carbon fiber heating wires, Cold Regions Science and Technology. (2011) 65, no. 3, 413–420, https://doi.org/10.1016/j.coldregions.2010.10.010, 2-s2.0-79251598724.
- 57 Zhou X.-M., Yang Z. J., Chang C., and Song G., Numerical assessment of electric roadway deicing system utilizing emerging carbon nanofiber paper, Journal of Cold Regions Engineering. (2012) 26, no. 1, 1–15, https://doi.org/10.1061/(asce)cr.1943-5495.0000033, 2-s2.0-84859082864.
- 58 Li H., Zhang Q., and Xiao H., Analytic investigations of CNFP-based self-deicing road system on the deicing performance, Cold Regions Science and Technology. (2014) 103, 123–132, https://doi.org/10.1016/j.coldregions.2014.04.001, 2-s2.0-84899673476.
- 59 Singh A. P., Gupta B. K., Mishra M., Chandra A., Mathur R. B., and Dhawan S. K., Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties, Carbon. (2013) 56, 86–96, https://doi.org/10.1016/j.carbon.2012.12.081, 2-s2.0-84875218092.
- 60 Wang B., Guo Z., Han Y., and Zhang T., Electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites, Construction and Building Materials. (2013) 46, 98–103, https://doi.org/10.1016/j.conbuildmat.2013.04.006, 2-s2.0-84878061794.
- 61 Nam I. W., Kim H. K., and Lee H. K., Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites, Construction and Building Materials. (2012) 30, 480–487, https://doi.org/10.1016/j.conbuildmat.2011.11.025, 2-s2.0-84855163912.
- 62 Gong H., Zhang Y., Quan J., and Che S., Preparation and properties of cement based piezoelectric composites modified by CNTs, Current Applied Physics. (2011) 11, no. 3, 653–656, https://doi.org/10.1016/j.cap.2010.10.021, 2-s2.0-79951673770.
- 63 Zuo J., Yao W., and Wu K., Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites, Fullerenes, Nanotubes and Carbon Nanostructures. (2015) 23, no. 5, 383–391, https://doi.org/10.1080/1536383X.2013.863760.
- 64 Wei J., Hao L., He G., and Yang C., Enhanced thermoelectric effect of carbon fiber reinforced cement composites by metallic oxide/cement interface, Ceramics International. (2014) 40, no. 6, 8261–8263, https://doi.org/10.1016/j.ceramint.2014.01.024, 2-s2.0-84897439161.
- 65 Wei J., Nie Z., He G., Hao L., Zhao L., and Zhang Q., Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites, RSC Advances. (2014) 4, no. 89, 48128–48134, https://doi.org/10.1039/C4RA07864K.