Predicting Surface Runoff from Catchment to Large Region
Hongxia Li
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China scu.edu.cn
Search for more papers by this authorCorresponding Author
Yongqiang Zhang
CSIRO Land Water Flagship, Clunies Ross Street, Acton, Canberra, ACT 2601, Australia csiro.au
Search for more papers by this authorXinyao Zhou
Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021, China cas.cn
Search for more papers by this authorHongxia Li
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China scu.edu.cn
Search for more papers by this authorCorresponding Author
Yongqiang Zhang
CSIRO Land Water Flagship, Clunies Ross Street, Acton, Canberra, ACT 2601, Australia csiro.au
Search for more papers by this authorXinyao Zhou
Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021, China cas.cn
Search for more papers by this authorAbstract
Predicting surface runoff from catchment to large region is a fundamental and challenging task in hydrology. This paper presents a comprehensive review for various studies conducted for improving runoff predictions from catchment to large region in the last several decades. This review summarizes the well-established methods and discusses some promising approaches from the following four research fields: (1) modeling catchment, regional and global runoff using lumped conceptual rainfall-runoff models, distributed hydrological models, and land surface models, (2) parameterizing hydrological models in ungauged catchments, (3) improving hydrological model structure, and (4) using new remote sensing precipitation data.
References
- 1 Li H., Zhang Y., Vaze J., and Wang B., Separating effects of vegetation change and climate variability using hydrological modelling and sensitivity-based approaches, Journal of Hydrology. (2012) 420-421, 403–418, https://doi.org/10.1016/j.jhydrol.2011.12.033, 2-s2.0-84856220557.
- 2 Zhao F., Chiew F. H. S., Zhang L., Vaze J., Perraud J. M., and Li M., Application of a macroscale hydrologic model to estimate streamflow across Southeast Australia, Journal of Hydrometeorology. (2012) 13, no. 4, 1233–1250, https://doi.org/10.1175/jhm-d-11-0114.1, 2-s2.0-84868333255.
- 3 Sorooshian S. and Gupta V., Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resources Research. (1992) 28, no. 4, 1015–1031, https://doi.org/10.1029/91wr02985, 2-s2.0-0026445234.
- 4 Zhang Y., Chiew F. H. S., Zhang L., and Li H., Use of remotely sensed actual evapotranspiration to improve rainfall-runoff modeling in Southeast Australia, Journal of Hydrometeorology. (2009) 10, no. 4, 969–980, https://doi.org/10.1175/2009JHM1061.1, 2-s2.0-77952257908.
- 5 Andersen J., Dybkjaer G., Jensen K. H., Refsgaard J. C., and Rasmussen K., Use of remotely sensed precipitation and leaf area index in a distributed hydrological model, Journal of Hydrology. (2002) 264, no. 1-4, 34–50, https://doi.org/10.1016/S0022-1694(02)00046-X, 2-s2.0-0037199337.
- 6 Li M. and Shao Q., An improved statistical approach to merge satellite rainfall estimates and raingauge data, Journal of Hydrology. (2010) 385, no. 1–4, 51–64, https://doi.org/10.1016/j.jhydrol.2010.01.023, 2-s2.0-77950857979.
- 7 Madsen H., Automatic calibration of a conceptual rainfall-runoff model using multiple objectives, Journal of Hydrology. (2000) 235, no. 3-4, 276–288, https://doi.org/10.1016/s0022-1694(00)00279-1, 2-s2.0-0034739246.
- 8 Vrugt J. A., Gupta H. V., Bastidas L. A., Bouten W., and Sorooshian S., Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resources Research. (2003) 39, no. 8, https://doi.org/10.1029/2002WR001746.
- 9 Willem Vervoort R., Miechels S. F., van Ogtrop F. F., and Guillaume J. H., Remotely sensed evapotranspiration to calibrate a lumped conceptual model: pitfalls and opportunities, Journal of Hydrology. (2014) 519, 3223–3236, https://doi.org/10.1016/j.jhydrol.2014.10.034.
- 10 Abu El-Nasr A., Arnold J. G., Feyen J., and Berlamont J., Modelling the hydrology of a catchment using a distributed and a semi-distributed model, Hydrological Processes. (2005) 19, no. 3, 573–587, https://doi.org/10.1002/hyp.5610, 2-s2.0-14244249189.
- 11 Huang M. and Zhang L., Hydrological responses to conservation practices in a catchment of the Loess Plateau, China, Hydrological Processes. (2004) 18, no. 10, 1885–1898, https://doi.org/10.1002/hyp.1454, 2-s2.0-3242663641.
- 12 Zhang Y. and Chiew F. H. S., Relative merits of different methods for runoff predictions in ungauged catchments, Water Resources Research. (2009) 45, no. 7, W07412, https://doi.org/10.1029/2008WR007504, 2-s2.0-69249151257.
- 13 Li F., Zhang Y., Xu Z., Teng J., Liu C., Liu W., and Mpelasoka F., The impact of climate change on runoff in the southeastern Tibetan Plateau, Journal of Hydrology. (2013) 505, 188–201, https://doi.org/10.1016/j.jhydrol.2013.09.052, 2-s2.0-84886246931.
- 14 Young A. R., Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model, Journal of Hydrology. (2006) 320, no. 1-2, 155–172, https://doi.org/10.1016/j.jhydrol.2005.07.017, 2-s2.0-33644500136.
- 15 Oudin L., Andréassian V., Perrin C., Michel C., and Le Moine N., Spatial proximity, physical similarity, regression and ungaged catchments: a comparison of regionalization approaches based on 913 French catchments, Water Resources Research. (2008) 44, no. 3, W03413, https://doi.org/10.1029/2007wr006240, 2-s2.0-43049134812.
- 16 Mishra A. K. and Coulibaly P., Developments in hydrometric network design: a review, Reviews of Geophysics. (2009) 47, no. 2, RG2001, https://doi.org/10.1029/2007rg000243, 2-s2.0-70349859901.
- 17 Sivapalan M., Prediction in ungauged basins: a grand challenge for theoretical hydrology, Hydrological Processes. (2003) 17, no. 15, 3163–3170, https://doi.org/10.1002/hyp.5155.
- 18 Hrachowitz M., Savenije H. H. G., Blöschl G., McDonnell J. J., Sivapalan M., Pomeroy J. W., Arheimer B., Blume T., Clark M. P., Ehret U., Fenicia F., Freer J. E., Gelfan A., Gupta H. V., Hughes D. A., Hut R. W., Montanari A., Pande S., Tetzlaff D., Troch P. A., Uhlenbrook S., Wagener T., Winsemius H. C., Woods R. A., Zehe E., and Cudennec C., A decade of Predictions in Ungauged Basins (PUB)-a review, Hydrological Sciences Journal. (2013) 58, no. 6, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2-s2.0-84883487379.
- 19 Merz R. and Blöschl G., Regionalisation of catchment model parameters, Journal of Hydrology. (2004) 287, no. 1–4, 95–123, https://doi.org/10.1016/j.jhydrol.2003.09.028, 2-s2.0-1542320086.
- 20 Razavi T. and Coulibaly P., Streamflow prediction in ungauged basins: review of regionalization methods, Journal of Hydrologic Engineering. (2013) 18, no. 8, 958–975, https://doi.org/10.1061/(asce)he.1943-5584.0000690, 2-s2.0-84881365698.
- 21 Parajka J., Blöschl G., and Merz R., Regional calibration of catchment models: potential for ungauged catchments, Water Resources Research. (2007) 43, no. 6, W06406, https://doi.org/10.1029/2006wr005271, 2-s2.0-34547208182.
- 22 Zhang Y. Q., Viney N. R., Chiew F. H. S., Van Dijk A. I. J. M., and Liu Y. Y., Improving hydrological and vegetation modelling using regional model calibration schemes together with remote sensing data, Proceedings of the 19th International Congress on Modelling and Simulation (MODSIM ′11), December 2011, 3448–3454, 2-s2.0-84863385369.
- 23 Beven K. J., Rainfall-Runoff Modeling—The Primer, 2001, Wiley, Chichester, UK.
- 24 Haddeland I., Clark D. B., Franssen W., Ludwig F., Voß F., Arnell N. W., Bertrand N., Best M., Folwell S., Gerten D., Gomes S., Gosling S. N., Hagemann S., Hanasaki N., Harding R., Heinke J., Kabat P., Koirala S., Oki T., Polcher J., Stacke T., Viterbo P., Weedon G. P., and Yeh P., Multimodel estimate of the global terrestrial water balance: setup and first results, Journal of Hydrometeorology. (2011) 12, no. 5, 869–884, https://doi.org/10.1175/2011jhm1324.1, 2-s2.0-83455255656.
- 25 Refsgaard J. C. and Storm B., V. J. Singh, MIKE SHE, Computer Models in Watershed Hydrology, 1995, Water Resources Publications, Littleton, Colo, USA.
- 26 Wagener T., Evaluation of catchment models, Hydrological Processes. (2003) 17, no. 16, 3375–3378, https://doi.org/10.1002/hyp.5158.
- 27 Chiew F. H. S., Pitman A. J., and McMahon T. A., Conceptual catchment scale rainfall-runoff models and AGCM land-surface parameterisation schemes, Journal of Hydrology. (1996) 179, no. 1-4, 137–157, https://doi.org/10.1016/0022-1694(95)02877-3, 2-s2.0-0030138981.
- 28 Kling H. and Gupta H., On the development of regionalization relationships for lumped watershed models: the impact of ignoring sub-basin scale variability, Journal of Hydrology. (2009) 373, no. 3-4, 337–351, https://doi.org/10.1016/j.jhydrol.2009.04.031, 2-s2.0-70349302015.
- 29 Fleming G., Computer Simulation Techniques in Hydrology, 1975, Elsevier, New York, NY, USA.
- 30 Singh V. P., Computer Models of Watershed Hydrology, 1995, Water Resources Publications.
- 31 Crawford N. H. and Linsley R. K., The Synthesis of Continuous Streamflow Hydrographs on a Digital Computer, 1962, Stanford University.
- 32 Ren-Jun Z., The Xinanjiang model applied in China, Journal of Hydrology. (1992) 135, no. 1–4, 371–381, https://doi.org/10.1016/0022-1694(92)90096-e, 2-s2.0-0026895285.
- 33 Burnash R. J., Ferreal C., McGuire R. A., and McGuire R. L., A Generalized Streamflow Simulation System: Conceptual Modeling for Digital Computers, 1973, U.S. Department of Commerce, National Weather Service.
- 34 Gupta H. V., Sorooshian S., and Yapo P. O., Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information, Water Resources Research. (1998) 34, no. 4, 751–763, https://doi.org/10.1029/97wr03495, 2-s2.0-0031922634.
- 35 Vansteenkiste T., Tavakoli M., Ntegeka V., De Smedt F., Batelaan O., Pereira F., and Willems P., Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections, Journal of Hydrology. (2014) 519, 743–755, https://doi.org/10.1016/j.jhydrol.2014.07.062.
- 36 Reed S., Koren V., Smith M., Zhang Z., Moreda F., and Seo D.-J., Overall distributed model intercomparison project results, Journal of Hydrology. (2004) 298, no. 1-4, 27–60, https://doi.org/10.1016/j.jhydrol.2004.03.031, 2-s2.0-4143112490.
- 37 Carpenter T. M. and Georgakakos K. P., Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales, Journal of Hydrology. (2006) 329, no. 1-2, 174–185, https://doi.org/10.1016/j.jhydrol.2006.02.013, 2-s2.0-33748329510.
- 38
Beven K. J. and
Kirkby M. J., A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d′appel variable de l′hydrologie du bassin versant, Hydrological Sciences Bulletin. (1979) 24, no. 1, 43–69, 2-s2.0-0018441920.
10.1080/02626667909491834 Google Scholar
- 39 Abbott M. B., Bathurst J. C., Cunge J. A., O′Connell P. E., and Rasmussen J., An introduction to the European Hydrological System—Systeme Hydrologique Europeen, ‘SHE’, 2: structure of a physically-based, distributed modelling system, Journal of Hydrology. (1986) 87, no. 1-2, 61–77, https://doi.org/10.1016/0022-1694(86)90115-0, 2-s2.0-0022929205.
- 40 Neitsch S. L., Arnold J. G., Kiniry J. R., Willams J. R., and King K. W., Soil and Water Assessment Tool Theoretical Documentation, Version 2000, 2000, http://swat.tamu.edu/documentation/.
- 41 Booker D. J. and Woods R. A., Comparing and combining physically-based and empirically-based approaches for estimating the hydrology of ungauged catchments, Journal of Hydrology. (2014) 508, 227–239, https://doi.org/10.1016/j.jhydrol.2013.11.007, 2-s2.0-84888422269.
- 42 Perrin C., Michel C., and Andréassian V., Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments, Journal of Hydrology. (2001) 242, no. 3-4, 275–301, https://doi.org/10.1016/S0022-1694(00)00393-0, 2-s2.0-0035961496.
- 43 Bonan G. B., A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user′s guide, NCAR Technical Note, 1996, no. NCAR/TN-417+STR, National Center for Atmospheric Research.
- 44 Manabe S., Climate and the ocean circulation I. The atmospheric circulation and the hydrology of the Earth′s surface, Monthly Weather Review. (1969) 97, no. 11, 739–774, https://doi.org/10.1175/1520-0493(1969)09760;0739:catoc62;2.3.co;2.
- 45 Dickinson R. E., Henderson-Sellers A., Kennedy P. J., and Wilson M. F., Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model, Technical Note, 1986, no. TN-275+STR, National Center for Atmospheric Research, Boulder, Colo, USA.
- 46 Sellers P. J., Mintz Y., Sud Y. C., and Dalcher A., A simple biosphere model (SiB) for use within general circulation models, Journal of the Atmospheric Sciences. (1986) 43, no. 6, 505–531, https://doi.org/10.1175/1520-0469(1986)04360;0505:asbmfu62;2.0.co;2, 2-s2.0-0022825341.
- 47
Oleson K. W.,
Lawrence D. M.,
Bonan G. B. et al., Technical description of version 4.5 of the Community Land Model (CLM), NCAR Technical Note, 2013, no. NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M.
10.5065/D6RR1W7M Google Scholar
- 48 Koster R. D. and Milly P. C. D., The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models, Journal of Climate. (1997) 10, no. 7, 1578–1591, https://doi.org/10.1175/1520-0442(1997)01060;1578:tibtar62;2.0.co;2, 2-s2.0-0031184666.
- 49 Stöckli R., Vidale P. L., Boone A., and Schär C., Impact of scale and aggregation on the terrestrial water exchange: integrating land surface models and rhône catchment observations, Journal of Hydrometeorology. (2007) 8, no. 5, 1002–1015, https://doi.org/10.1175/jhm613.1, 2-s2.0-36348989067.
- 50 Widén-Nilsson E., Halldin S., and Xu C.-Y., Global water-balance modelling with WASMOD-M: parameter estimation and regionalisation, Journal of Hydrology. (2007) 340, no. 1-2, 105–118, https://doi.org/10.1016/j.jhydrol.2007.04.002, 2-s2.0-34249864766.
- 51 Gosling S. N., Taylor R. G., Arnell N. W., and Todd M. C., A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models, Hydrology and Earth System Sciences. (2011) 15, no. 1, 279–294, https://doi.org/10.5194/hess-15-279-2011, 2-s2.0-79251494118.
- 52 Blöschl G. and Sivapalan M., Scale issues in hydrological modelling: a review, Hydrological Processes. (1995) 9, no. 3-4, 251–290, https://doi.org/10.1002/hyp.3360090305, 2-s2.0-0029413274.
- 53 Samuel J., Coulibaly P., and Metcalfe R. A., Estimation of continuous streamflow in ontario ungauged basins: comparison of regionalization methods, Journal of Hydrologic Engineering. (2011) 16, no. 5, 447–459, https://doi.org/10.1061/(asce)he.1943-5584.0000338, 2-s2.0-79955738675.
- 54 Stoll S. and Weiler M., Explicit simulations of stream networks to guide hydrological modelling in ungauged basins, Hydrology and Earth System Sciences. (2010) 14, no. 8, 1435–1448, https://doi.org/10.5194/hess-14-1435-2010, 2-s2.0-77955342505.
- 55 Parada L. M. and Liang X., A novel approach to infer streamflow signals for ungauged basins, Advances in Water Resources. (2010) 33, no. 4, 372–386, https://doi.org/10.1016/j.advwatres.2010.01.003, 2-s2.0-77950532276.
- 56 Li H., Zhang Y., Chiew F. H. S., and Xu S., Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index, Journal of Hydrology. (2009) 370, no. 1–4, 155–162, https://doi.org/10.1016/j.jhydrol.2009.03.003, 2-s2.0-65349127695.
- 57 Parajka J., Merz R., and Blöschl G., A comparison of regionalisation methods for catchment model parameters, Hydrology and Earth System Sciences. (2005) 9, no. 3, 157–171, https://doi.org/10.5194/hess-9-157-2005, 2-s2.0-27644594471.
- 58 Reichl J. P. C., Western A. W., McIntyre N. R., and Chiew F. H. S., Optimization of a similarity measure for estimating ungauged streamflow, Water Resources Research. (2009) 45, no. 10, W10423, https://doi.org/10.1029/2008WR007248, 2-s2.0-72149083552.
- 59 Samaniego L., Bárdossy A., and Kumar R., Streamflow prediction in ungauged catchments using copula-based dissimilarity measures, Water Resources Research. (2010) 46, no. 2, W02506, https://doi.org/10.1029/2008wr007695, 2-s2.0-77249103552.
- 60 Masih I., Uhlenbrook S., Maskey S., and Ahmad M. D., Regionalization of a conceptual rainfall-runoff model based on similarity of the flow duration curve: a case study from the semi-arid Karkheh basin, Iran, Journal of Hydrology. (2010) 391, no. 1-2, 188–201, https://doi.org/10.1016/j.jhydrol.2010.07.018, 2-s2.0-77956185599.
- 61 Li M., Shao Q., Zhang L., and Chiew F. H. S., A new regionalization approach and its application to predict flow duration curve in ungauged basins, Journal of Hydrology. (2010) 389, no. 1-2, 137–145, https://doi.org/10.1016/j.jhydrol.2010.05.039, 2-s2.0-77954384686.
- 62 Shu C. and Ouarda T. B. M. J., Improved methods for daily streamflow estimates at ungauged sites, Water Resources Research. (2012) 48, no. 2, W02523, https://doi.org/10.1029/2011WR011501, 2-s2.0-84857396023.
- 63 McIntyre N., Lee H., Wheater H., Young A., and Wagener T., Ensemble predictions of runoff in ungauged catchments, Water Resources Research. (2005) 41, no. 12, W12434, https://doi.org/10.1029/2005wr004289, 2-s2.0-31444439953.
- 64 Li F., Zhang Y., Xu Z., Liu C., Zhou Y., and Liu W., Runoff predictions in ungauged catchments in southeast Tibetan Plateau, Journal of Hydrology. (2014) 511, 28–38, https://doi.org/10.1016/j.jhydrol.2014.01.014, 2-s2.0-84893374504.
- 65 Beven K. J., Changing ideas in hydrology—the case of physically-based models, Journal of Hydrology. (1989) 105, no. 1-2, 157–172, https://doi.org/10.1016/0022-1694(89)90101-7, 2-s2.0-0024471068.
- 66 Jakeman A. J. and Hornberger G. M., How much complexity is warranted in a rainfall-runoff model?, Water Resources Research. (1993) 29, no. 8, 2637–2649, https://doi.org/10.1029/93WR00877, 2-s2.0-0027790160.
- 67 Gupta H. V., Wagener T., and Liu Y., Reconciling theory with observations: elements of a diagnostic approach to model evaluation, Hydrological Processes. (2008) 22, no. 18, 3802–3813, https://doi.org/10.1002/hyp.6989, 2-s2.0-49449115848.
- 68 Seibert J. and McDonnell J. J., On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration, Water Resources Research. (2002) 38, no. 11, 231–2314, https://doi.org/10.1029/2001wr000978, 2-s2.0-0036879790.
- 69 Nester T., Kirnbauer R., Parajka J., and Blöschl G., Evaluating the snow component of a flood forecasting model, Hydrology Research. (2012) 43, no. 6, 762–779, https://doi.org/10.2166/nh.2012.041, 2-s2.0-84864616067.
- 70 Mohamed Y. A., Savenije H. H. G., Bastiaanssen W. G. M., and van den Hurk B. J. J. M., New lessons on the Sudd hydrology learned from remote sensing and climate modeling, Hydrology and Earth System Sciences. (2006) 10, no. 4, 507–518, https://doi.org/10.5194/hess-10-507-2006, 2-s2.0-33745879113.
- 71 Parajka J. and Blöschl G., Validation of MODIS snow cover images over Austria, Hydrology and Earth System Sciences. (2006) 10, no. 5, 679–689, https://doi.org/10.5194/hess-10-679-2006, 2-s2.0-33749318365.
- 72 Winsemius H. C., G. Savenije H. H., and M. Bastiaanssen W. G., Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins?, Hydrology and Earth System Sciences. (2008) 12, no. 6, 1403–1413, https://doi.org/10.5194/hess-12-1403-2008, 2-s2.0-58149519238.
- 73 Zhang Y. Q., Chiew F. H. S., Zhang L., Leuning R., and Cleugh H. A., Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman-Monteith equation, Water Resources Research. (2008) 44, no. 10, W10420, https://doi.org/10.1029/2007WR006563, 2-s2.0-57149084701.
- 74 Zhang Y. Q., Viney N. R., Chiew F. H. S., Dijk A. I. J. M., and Liu Y. Y., Improving hydrological and vegetation modelling using regional model calibration schemes together with remote sensing data, Proceedings of the 19th International Congress on Modelling and Simulation (MODSIM ′11), 2011, Perth, Australia, 12–16.
- 75 Blöschl G., Reszler C., and Komma J., A spatially distributed flash flood forecasting model, Environmental Modelling & Software. (2008) 23, no. 4, 464–478, https://doi.org/10.1016/j.envsoft.2007.06.010, 2-s2.0-36148984281.
- 76 Tuteja N. K., Vaze J., Teng J., and Mutendeudzi M., Partitioning the effects of pine plantations and climate variability on runoff from a large catchment in southeastern Australia, Water Resources Research. (2007) 43, no. 8, W08415, https://doi.org/10.1029/2006WR005016, 2-s2.0-34848831161.
- 77 Yildiz O. and Barros A. P., Elucidating vegetation controls on the hydroclimatology of a mid-latitude basin, Journal of Hydrology. (2007) 333, no. 2-4, 431–448, https://doi.org/10.1016/j.jhydrol.2006.09.010, 2-s2.0-33845988406.
- 78 Tuteja N. K., Vaze J., Teng J., and Mutendeudzi M., Partitioning the effects of pine plantations and climate variability on runoff from a large catchment in southeastern Australia, Water Resources Research. (2007) 43, no. 8, W08415, https://doi.org/10.1029/2006wr005016, 2-s2.0-34848831161.
- 79 Fang M. and Huang W., Tracking the Indonesian forest fire using NOAA/AVHRR images, International Journal of Remote Sensing. (1998) 19, no. 3, 387–390, https://doi.org/10.1080/014311698216044, 2-s2.0-0032004501.
- 80 Islam M. D. M. and Sado K., Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS, Hydrological Sciences Journal. (2000) 45, no. 3, 337–355.
- 81 Ranzi R., Grossi G., and Bacchi B., Ten years of monitoring areal snowpack in the Southern Alps using NOAA-AVHRR imagery, ground measurements and hydrological data, Hydrological Processes. (1999) 13, no. 12-13, 2079–2095, https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<2079::AID-HYP875>3.0.CO;2-U, 2-s2.0-0033190332.
- 82 Oudin L., Andréassian V., Lerat J., and Michel C., Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments, Journal of Hydrology. (2008) 357, no. 3-4, 303–316, https://doi.org/10.1016/j.jhydrol.2008.05.021, 2-s2.0-47249139021.
- 83 Liang X. and Xie Z., A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models, Advances in Water Resources. (2001) 24, no. 9-10, 1173–1193, https://doi.org/10.1016/S0309-1708(01)00032-X, 2-s2.0-0035518626.
- 84 Pitman A. J., Slater A. G., Desborough C. E., and Zhao M., Uncertainty in the simulation of runoff due to the parameterization of frozen soil moisture using the Global Soil Wetness Project methodology, Journal of Geophysical Research D: Atmospheres. (1999) 104, no. 14, 16879–16888, https://doi.org/10.1029/1999jd900261, 2-s2.0-0033430112.
- 85 Haverd V. and Cuntz M., Soil-Litter-Iso: a one-dimensional model for coupled transport of heat, water and stable isotopes in soil with a litter layer and root extraction, Journal of Hydrology. (2010) 388, no. 3-4, 438–455, https://doi.org/10.1016/j.jhydrol.2010.05.029, 2-s2.0-77953650631.
- 86 Choi H. I. and Liang X.-Z., Improved terrestrial hydrologic representation in mesoscale land surface models, Journal of Hydrometeorology. (2010) 11, no. 3, 797–809, https://doi.org/10.1175/2010JHM1221.1, 2-s2.0-77955487638.
- 87 Krajewski W. F., Villarini G., and Smith J. A., Radar-rainfall uncertainties: where are we after thirty years of effort, Bulletin of the American Meteorological Society. (2010) 91, no. 1, 87–94, https://doi.org/10.1175/2009bams2747.1, 2-s2.0-77249145879.
- 88 Moore R. J., Cole S. J., and Illingworth A. J., Weather Radar and Hydrology, 2012, IAHS Press, Wallingford, Conn, USA, IAHS Publication 351.
- 89 Ehret U., Rainfall and flood nowcasting in small catchments using weather radar [Ph.D. thesis], 2002, University of Stuttgart.
- 90 Todini E., A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements, Hydrology and Earth System Sciences. (2001) 5, no. 2, 187–199, https://doi.org/10.5194/hess-5-187-2001, 2-s2.0-0034868092.
- 91 Pereira Filho A. J., Integrating gauge, radar and satellite rainfall, Proceedings of the 2nd International Precipitation Working Group Workshop, 2004.
- 92 Huffman G. J., Adler R. F., Bolvin D. T., Gu G., Nelkin E. J., Bowman K. P., Hong Y., Stocker E. F., and Wolff D. B., The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, Journal of Hydrometeorology. (2007) 8, no. 1, 38–55, https://doi.org/10.1175/jhm560.1, 2-s2.0-33947356755.
- 93 Vila D. A., De Goncalves L. G. G., Toll D. L., and Rozante J. R., Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America, Journal of Hydrometeorology. (2009) 10, no. 2, 533–543, https://doi.org/10.1175/2008jhm1048.1, 2-s2.0-67649479609.
- 94 Seo D.-J., Real-time estimation of rainfall fields using rain gage data under fractional coverage conditions, Journal of Hydrology. (1998) 208, no. 1-2, 25–36, https://doi.org/10.1016/s0022-1694(98)00140-1, 2-s2.0-0032504125.
- 95 Gottschalck J., Meng J., Rodell M., and Houser P., Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states, Journal of Hydrometeorology. (2005) 6, no. 5, 573–598, https://doi.org/10.1175/jhm437.1, 2-s2.0-28044434398.
- 96 Chappell A., Renzullo L. H., Raupach T. J., and Haylock M., Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia, Journal of Hydrology. (2013) 493, 105–114, https://doi.org/10.1016/j.jhydrol.2013.04.024, 2-s2.0-84877912861.
- 97 Mitra A. K., Momin I. M., Rajagopal E. N., Basu S., Rajeevan M. N., and Krishnamurti T. N., Gridded daily Indian monsoon rainfall for 14 seasons: merged TRMM and IMD gauge analyzed values, Journal of Earth System Science. (2013) 122, no. 5, 1173–1182, https://doi.org/10.1007/s12040-013-0338-3, 2-s2.0-84889667555.
- 98 Ryo M., Valeriano O. C. S., Kanae S., and Ngoc T. D., Temporal downscaling of daily gauged precipitation by application of a satellite product for flood simulation in a poorly gauged basin and its evaluation with multiple regression analysis, Journal of Hydrometeorology. (2014) 15, no. 2, 563–580, https://doi.org/10.1175/jhm-d-13-052.1, 2-s2.0-84897974512.
- 99 Boughton W. and Chiew F., Calibrations of the AWBM for Use on Ungauged Catchments, 2004.
- 100 Perrin C., Michel C., and Andréassian V., Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology. (2003) 279, no. 1–4, 275–289, https://doi.org/10.1016/s0022-1694(03)00225-7, 2-s2.0-0141682120.
- 101 Bergstrom S., V. P. Singh, The HBV model, Computer Models of Watershed Hydrology, 1995.
- 102 Feldman A. D., HEC models for water resources management simulation: theory and experience, Advances in Hydroscience. (1981) 12, 297–423, 2-s2.0-0019746814.
- 103 Crawford N. H. and Linsley R. K., Digital Simulation in Hydrology: Stanford Watershed Model IV, 1966, Stanford University, Stanford, Calif, USA.
- 104
Porter J. W. and
McMahon T. A., A model for the simulation of streamflow data from climatic records, Journal of Hydrology. (1971) 13, 297–324, https://doi.org/10.1016/0022-1694(71)90250-2, 2-s2.0-0015129760.
10.1016/0022-1694(71)90250-2 Google Scholar
- 105 Chiew F. H. S., Peel M. C., and Western A. W., V. P. Singh and D. K. Frevert, Application and testing of the simple rainfall-runoff model SIMHYD, Mathematical Models of Small Watershed Hydrology and Applications, 2002, Water Resources Publications, Littleton, Colo, USA.
- 106 Sugawawa M., Watanabe I., Ozaki E., and Katsuyama Y., Tank Model Programs for Personal Computer and the Way to Use, 1961, National Research Center for Disaster Prevention, Tsukuba, Japan.
- 107
Martinec J., Snowmelt-Runoff Models for stream flow forecasts, Nordic Hydrology. (1975) 6, no. 3, 145–154, 2-s2.0-0016619244.
10.2166/nh.1975.0010 Google Scholar
- 108 Morin G., CEQUEAU, INRS-ETE, 2002.
- 109 Fortin J.-P., Turcotte R., Massicotte S., Moussa R., Fitzback J., and Villeneuve J. P., Distributed watershed model compatible with remote sensing and GIS data. I: description of model, Journal of Hydrologic Engineering. (2001) 6, no. 2, 91–99, https://doi.org/10.1061/(asce)1084-0699(2001)6:2(91), 2-s2.0-0035282496.
- 110 Calver A. and Wood W. L., V. P. Singh, The institute of hydrology distributed model, Computer Models of Watershed Hydrology, 1995, Water Resources Publications, Highlands Ranch, Colo, USA, 595–626.
- 111 Kite G. W., V. P. Singh, The SLURP model, Computer Models of Watershed Hydrology, 1995, Water Resources Publications, 521–562.
- 112 Rossman L. A., Storm Water Management Model User′s Manual, 2007, U.S. Environmental Protection Agency, Cincinnati, Ohio, EPA/600/R-05/040.
- 113 Kouwen N., WATFLOOD/SPL9 Hydrological Model & Flood Forecasting System, 2001, University of Waterloo.
- 114 Hanasaki N., Kanae S., and Oki T., Global energy and water balance simulation with bucket model for GSWP2, Proceedings of the 18th Conference on Hydrology and the 15th Symposium on Global Change and Climate Variations, 2004, JP4.26.
- 115 Kowalczyk E. A., Wang Y. P., Law R. M., Davies H. L., McGregor J. L., and Abramowitz G., CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline model, CMAR Research Paper, 2006, no. 013.
- 116 Niu G. Y. and Yang Z. L., The versatile integrator of surface and atmosphere processes (VISA). Part 2: evaluation of three topography-based runoff schemes, Global and Planetary Change. (2003) 38, 191–208.
- 117 Dirmeyer P. A. and Zeng F. J., An update to the distribution and treatment of vegetation and soil properties in SSiB, COLA Technical Report, 1999, no. 78.
- 118 Meigh J. R., McKenzie A. A., and Sene K. J., A grid-based approach to water scarcity estimates for eastern and southern Africa, Water Resources Management. (1999) 13, no. 2, 85–115, https://doi.org/10.1023/A:1008025703712, 2-s2.0-0032741987.
- 119 Hanasaki N., Kanae S., Oki T., Masuda K., Motoya K., Shirakawa N., Shen Y., and Tanaka K., An integrated model for the assessment of global water resources—part 1: model description and input meteorological forcing, Hydrology and Earth System Sciences. (2008) 12, no. 4, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2-s2.0-49049098462.
- 120 Balsamo G., Viterbo P., Beijaars A., van den Hurk B., Hirschi M., Betts A. K., and Scipal K., A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system, Journal of Hydrometeorology. (2009) 10, no. 3, 623–643, https://doi.org/10.1175/2008jhm1068.1, 2-s2.0-68049085458.
- 121
Mocko D. M. and
Sud Y. C., Refinements to SSiB with an emphasis on snowphysics: evaluation and validation using GSWP and valdai data, Earth Interactions. (2001) 5, no. 1, 1–31, https://doi.org/10.1175/1087-3562(2001)00560;0001:rtswae62;2.0.co;2.
10.1175/1087-3562(2001)005<0001:RTSWAE>2.0.CO;2 Google Scholar
- 122 Etchevers P., Golaz C., and Habets F., Simulation of the water budget and the river flows of the Rhone basin from 1981 to 1994, Journal of Hydrology. (2001) 244, no. 1-2, 60–85, https://doi.org/10.1016/s0022-1694(01)00332-8, 2-s2.0-0035794649.
- 123 Cox P. M., Betts R. A., Bunton C. B., Essery R. L. H., Rowntree P. R., and Smith J., The impact of new land surface physics on the GCM simulation of climate and climate sensitivity, Climate Dynamics. (1999) 15, no. 3, 183–203, https://doi.org/10.1007/s003820050276, 2-s2.0-0033044341.
- 124 Milly P. C. D. and Shmakin A. B., Global modeling of land water and energy balances. Part I: the land dynamics (LaD) model, Journal of Hydrometeorology. (2002) 3, no. 3, 283–299, https://doi.org/10.1175/1525-7541(2002)003lt;0283:gmolwax0003e;2.0.co;2, 2-s2.0-0035982615.
- 125 Rost S., Gerten D., Bondeau A., Lucht W., Rohwer J., and Schaphoff S., Agricultural green and blue water consumption and its influence on the global water system, Water Resources Research. (2008) 44, no. 9, W09405, https://doi.org/10.1029/2007WR006331, 2-s2.0-54949113936.
- 126 Arnell N. W., A simple water balance model for the simulation of streamflow over a large geographic domain, Journal of Hydrology. (1999) 217, no. 3-4, 314–335, https://doi.org/10.1016/S0022-1694(99)00023-2, 2-s2.0-0033617376.
- 127 Takata K., Emori S., and Watanabe T., Development of the minimal advanced treatments of surface interaction and runoff, Global and Planetary Change. (2003) 38, no. 1-2, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2-s2.0-0038350457.
- 128 Koster R. D. and Suarez M. J., The influence of land surface moisture retention on precipitation statistics, Journal of Climate. (1996) 9, no. 10, 2551–2567.
- 129 Hagemann S. and Gates L. D., Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations, Climate Dynamics. (2003) 21, no. 3-4, 349–359, https://doi.org/10.1007/s00382-003-0349-x, 2-s2.0-0142137717.
- 130 Chen F., Mitchell K., Schaake J., Xue Y., Pan H.-L., Koren V., Duan Q. Y., Ek M., and Betts A., Modeling of land surface evaporation by four schemes and comparison with FIFE observations, Journal of Geophysical Research D: Atmospheres. (1996) 101, no. 3, 7251–7268, https://doi.org/10.1029/95jd02165, 2-s2.0-0030465032.
- 131 Ducharne A., Koster R. D., Suarez M. J., Stieglitz M., and Kumar P., A catchment-based approach to modeling land surface processes in a general circulation model 2. Parameter estimation and model demonstration, Journal of Geophysical Research D: Atmospheres. (2000) 105, no. 20, 24823–24838, https://doi.org/10.1029/2000jd900328, 2-s2.0-16644392990.
- 132 de Rosnay P. and Polcher J., Modelling root water uptake in a complex land surface scheme coupled to a GCM, Hydrology and Earth System Sciences. (1998) 2, no. 2-3, 239–255, https://doi.org/10.5194/hess-2-239-1998, 2-s2.0-0032434902.
- 133
Tanaka K.,
Tadanori N., and
Shuichi I., Land-surface parameterization in the Lake Biwa project, Proceedings of Hydraulic Engineering. (1998) 42, 79–84, https://doi.org/10.2208/prohe.42.79.
10.2208/prohe.42.79 Google Scholar
- 134 Gusev Y. M. and Nasonova O. N., An experience of modelling heat and water exchange at the land surface on a large river basin scale, Journal of Hydrology. (2000) 233, no. 1–4, 1–18, https://doi.org/10.1016/s0022-1694(00)00225-0, 2-s2.0-0034641075.
- 135 Lettenmaier D. P., Wood E. F., and Burges S. J., A simple hydrologically based model of land surface water and energy fluxes for general circulation models, Journal of Geophysical Research. (1994) 99, no. 7, 14–428, 2-s2.0-0028602239.
- 136 Yang Z.-L. and Niu G.-Y., The versatile integrator of surface and atmosphere processes part 1. Model description, Global and Planetary Change. (2003) 38, no. 1-2, 175–189, https://doi.org/10.1016/s0921-8181(03)00028-6, 2-s2.0-0038449107.
- 137 Alcamo J., Döll P., Henrichs T., Kaspar F., Lehner B., Rösch T., and Siebert S., Development and testing of the WaterGAP 2 global model of water use and availability, Hydrological Sciences Journal. (2003) 48, no. 3, 317–338, https://doi.org/10.1623/hysj.48.3.317.45290, 2-s2.0-0038469997.
- 138 Kay A. L., Jones D. A., Crooks S. M., Calver A., and Reynard N. S., A comparison of three approaches to spatial generalization of rainfall-runoff models, Hydrological Processes. (2006) 20, no. 18, 3953–3973, https://doi.org/10.1002/hyp.6550, 2-s2.0-33845368777.
- 139 Zhang Y., Vaze J., Chiew F. H., Teng J., and Li M., Predicting hydrological signatures in ungauged catchments using spatial interpolation, index model, and rainfall–runoff modelling, Journal of Hydrology. (2014) 517, 936–948, https://doi.org/10.1016/j.jhydrol.2014.06.032.
- 140 Yatagai A., Kamiguchi K., Arakawa O., Hamada A., Yasutomi N., and Kitoh A., APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, Bulletin of the American Meteorological Society. (2012) 93, no. 9, 1401–1415, https://doi.org/10.1175/bams-d-11-00122.1, 2-s2.0-84862984556.
- 141 Joseph R., Smith T. M., Sapiano M. R. P., and Ferraro R. R., A new high-resolution satellite-derived precipitation dataset for climate studies, Journal of Hydrometeorology. (2009) 10, no. 4, 935–952, https://doi.org/10.1175/2009jhm1096.1, 2-s2.0-77952696528.
- 142 Dirmeyer P. A., Dolman A. J., and Sato N., The global soil wetness project: a pilot project for global land surface modeling and validation, Bulletin of the American Meteorological Society. (1999) 80, 851–878.
- 143 Weedon G. P., Gomes S., Viterbo P., Shuttleworth W. J., Blyth E., ÖSterle H., Adam J. C., Bellouin N., Boucher O., and Best M., Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century, Journal of Hydrometeorology. (2011) 12, no. 5, 823–848, https://doi.org/10.1175/2011jhm1369.1, 2-s2.0-80052354448.
- 144 Weedon G. P., Balsamo G., Bellouin N., Gomes S., Best M. J., and Viterbo P., The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resources Research. (2014) 50, no. 9, 7505–7514, https://doi.org/10.1002/2014wr015638.
- 145 Xie P. and Arkin P. A., Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bulletin of the American Meteorological Society. (1997) 78, no. 11, 2539–2558, https://doi.org/10.1175/1520-0477(1997)07860;2539:gpayma62;2.0.co;2, 2-s2.0-0031403103.
- 146 Joyce R. J., Janowiak J. E., Arkin P. A., and Xie P., CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution, Journal of Hydrometeorology. (2004) 5, no. 3, 487–503, https://doi.org/10.1175/1525-7541(2004)005lt;0487:camtpg62;2.0.co;2, 2-s2.0-2442514138.
- 147 Harris I., Jones P. D., Osborn T. J., and Lister D. H., Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset, International Journal of Climatology. (2014) 34, no. 3, 623–642, https://doi.org/10.1002/joc.3711, 2-s2.0-84896707401.
- 148 Thornton P. E., Thornton M. M., Mayer B. W., Wilhelmi N., Wei Y., Devarakonda R., and Cook R. B., Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Data Set, 2014, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tenn, USA, http://daac.ornl.gov/.
- 149 Legates D. R. and Willmott C. J., Mean seasonal and spatial variability in global surface air temperature, Theoretical and Applied Climatology. (1990) 41, no. 1-2, 11–21, https://doi.org/10.1007/BF00866198, 2-s2.0-0025587429.
- 150 Schneider U., Becker A., Finger P., Meyer-Christoffer A., Ziese M., and Rudolf B., GPCC′s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle, Theoretical and Applied Climatology. (2014) 115, no. 1-2, 15–40, https://doi.org/10.1007/s00704-013-0860-x, 2-s2.0-84891661527.
- 151 Sheffield J., Goteti G., and Wood E. F., Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, Journal of Climate. (2006) 19, no. 13, 3088–3111, https://doi.org/10.1175/jcli3790.1, 2-s2.0-33746906726.
- 152 Adler R. F., Huffman G. J., Chang A., Ferraro R., Xie P.-P., Janowiak J., Rudolf B., Schneider U., Curtis S., Bolvin D., Gruber A., Susskind J., Arkin P., and Nelkin E., The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present), Journal of Hydrometeorology. (2003) 4, no. 6, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2, 2-s2.0-0842334547.
- 153
Andersson A.,
Fennig K.,
Klepp C.,
Bakan S.,
Graßl H., and
Schulz J., The hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3, Earth System Science Data. (2010) 2, no. 2, 215–234, https://doi.org/10.5194/essd-2-215-2010.
10.5194/essd-2-215-2010 Google Scholar
- 154 Large W. G. and Yeager S. G., The global climatology of an interannually varying air—sea flux data set, Climate Dynamics. (2009) 33, no. 2-3, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2-s2.0-67649159670.
- 155 Mitchell K. E., Lohmann D., Houser P. R. et al., The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system, Journal of Geophysical Research. (2004) 109, D07S90, https://doi.org/10.1029/2003JD003823.
- 156 Rodell M., Houser P. R., Jambor U., Gottschalck J., Mitchell K., Meng C.-J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J. K., Walker J. P., Lohmann D., and Toll D., The global land data assimilation system, Bulletin of the American Meteorological Society. (2004) 85, no. 3, 381–394, https://doi.org/10.1175/bams-85-3-381, 2-s2.0-11144356588.
- 157 Sorooshian S., Hsu K.-L., Gao X., Gupta H. V., Imam B., and Braithwaite D., Evaluation of PERSIANN system satellite–based estimates of tropical rainfall, Bulletin of the American Meteorological Society. (2000) 81, no. 9, 2035–2046, https://doi.org/10.1175/1520-0477(2000)08160;2035:eopsse62;2.3.co;2, 2-s2.0-0001508343.
- 158 Chen M., Xie P., Janowiak J. E., and Arkin P. A., Global land precipitation: a 50-yr monthly analysis based on gauge observations, Journal of Hydrometeorology. (2002) 3, no. 3, 249–266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2, 2-s2.0-0035982882.
- 159 Daly C., Halbleib M., Smith J. I., Gibson W. P., Doggett M. K., Taylor G. H., Curtis J., and Pasteris P. P., Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, International Journal of Climatology. (2008) 28, no. 15, 2031–2064, https://doi.org/10.1002/joc.1688, 2-s2.0-61749095927.
- 160 Ferraro R. R., Weng F., Grody N. C., and Basist A., An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements, Bulletin of the American Meteorological Society. (1996) 77, no. 5, 891–905, 2-s2.0-0030425367.