A Review on Land Surface Processes Modelling over Complex Terrain
Wei Zhao
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China cas.cn
Search for more papers by this authorCorresponding Author
Ainong Li
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China cas.cn
Search for more papers by this authorWei Zhao
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China cas.cn
Search for more papers by this authorCorresponding Author
Ainong Li
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China cas.cn
Search for more papers by this authorAbstract
Complex terrain, commonly represented by mountainous region, occupies nearly one-quarter of the Earth’s continental areas. An accurate understanding of water cycle, energy exchange, carbon cycle, and many other biogeophysical or biogeochemical processes in this area has become more and more important for climate change study. Due to the influences from complex topography and rapid variation in elevation, it is usually difficult for field measurements to capture the land-atmosphere interactions well, whereas land surface model (LSM) simulation provides a good alternative. A systematic review is introduced by pointing out the key issues for land surface processes simulation over complex terrain: (1) high spatial heterogeneity for land surface parameters in horizontal direction, (2) big variation of atmospheric forcing data in vertical direction related to elevation change, (3) scale effect on land surface parameterization in LSM, and (4) two-dimensional modelling which considers the gravity influence. Regarding these issues, it is promising for better simulation at this special region by involving higher spatial resolution atmospheric forcing data which can reflect the influences from topographic changes and making necessary improvements on model structure related to topographic factors. In addition, the incorporation of remote sensing techniques will significantly help to reduce uncertainties in model initialization, simulation, and validation.
References
- 1 Wood E. F., Lettenmaier D. P., and Zartarian V. G., A land-surface hydrology parameterization with subgrid variability for general circulation models, Journal of Geophysical Research. (1992) 97, no. 3, 2717–2728, https://doi.org/10.1029/91JD01786, 2-s2.0-0026493570.
- 2 Betts A. K., Ball J. H., Beljaars A., Miller M. J., and Viterbo P. A., The land surface-atmosphere interaction: a review based on observational and global modeling perspectives, Journal of Geophysical Research D: Atmospheres. (1996) 101, no. 3, 7209–7225.
- 3 Lautenbacher C. C., The global earth observation system of systems: science serving society, Space Policy. (2006) 22, no. 1, 8–11, https://doi.org/10.1016/j.spacepol.2005.12.004, 2-s2.0-32044433514.
- 4 Scholes R. J., Mace G. M., Turner W., Geller G. N., Jürgens N., Larigauderie A., Muchoney D., Walther B. A., and Mooney H. A., Toward a global biodiversity observing system, Science. (2008) 321, no. 5892, 1044–1045, https://doi.org/10.1126/science.1162055, 2-s2.0-50149097341.
- 5 Baldocchi D., Falge E., Gu L., Olson R., Hollinger D., Running S., Anthoni P., Bernhofer C., Davis K., Evans R., Fuentes J., Goldstein A., Katul G., Law B., Lee X., Malhi Y., Meyers T., Munger W., Oechel W., Paw U. K. T., Pilegaard K., Schmid H. P., Valentini R., Verma S., Vesala T., Wilson K., and Wofsy S., FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bulletin of the American Meteorological Society. (2001) 82, no. 11, 2415–2434, https://doi.org/10.1175/1520-0477(2001)08260;2415:fantts62;2.3.co;2, 2-s2.0-0001633245.
- 6 Baldocchi D. D., Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future, Global Change Biology. (2003) 9, no. 4, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2-s2.0-0037995440.
- 7 Justice C. O., Townshend J. R. G., Vermote E. F., Masuoka E., Wolfe R. E., Saleous N., Roy D. P., and Morisette J. T., An overview of MODIS Land data processing and product status, Remote Sensing of Environment. (2002) 83, no. 1-2, 3–15, https://doi.org/10.1016/s0034-4257(02)00084-6, 2-s2.0-0036847048.
- 8 Liang S., Zhao X., Liu S., Yuan W., Cheng X., Xiao Z., Zhang X., Liu Q., Cheng J., Tang H., Qu Y., Bo Y., Qu Y., Ren H., Yu K., and Townshend J., A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies, International Journal of Digital Earth. (2013) 6, no. 1, 5–33, https://doi.org/10.1080/17538947.2013.805262, 2-s2.0-84890559907.
- 9 Bartholomé E. and Belward A. S., GLC2000: a new approach to global land cover mapping from earth observation data, International Journal of Remote Sensing. (2005) 26, no. 9, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2-s2.0-20944440113.
- 10 Crow W. T. and Zhan X., Continental-scale evaluation of remotely sensed soil moisture products, IEEE Geoscience and Remote Sensing Letters. (2007) 4, no. 3, 451–455, https://doi.org/10.1109/LGRS.2007.896533, 2-s2.0-34547218382.
- 11 Sellers P. J., Hall F. G., Asrar G., Strebel D. E., and Murphy R. E., An overview of the first international satellite land surface climatology project (ISLSCP) field experiment (FIFE), Journal of Geophysical Research: Atmospheres. (1992) 97, no. 17, 18345–18371, 2-s2.0-0027098872.
- 12 Sellers P. J., Hall F. G., Kelly R. D., Black A., Baldocchi D., Berry J., Ryan M., Ranson K. J., Crill P. M., Lettenmaier D. P., Margolis H., Cihlar J., Newcomer J., Fitzjarrald D., Jarvis P. G., Gower S. T., Halliwell D., Williams D., Goodison B., Wickland D. E., and Guertin F. E., BOREAS in 1997: experiment overview, scientific results, and future directions, Journal of Geophysical Research: Atmospheres. (1997) 102, no. 24, 28731–28769, https://doi.org/10.1029/97jd03300, 2-s2.0-0031448674.
- 13 Li X., Cheng G., Liu S., Xiao Q., Ma M., Jin R., Che T., Liu Q., Wang W., and Qi Y., Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design, Bulletin of the American Meteorological Society. (2013) 94, no. 8, 1145–1160.
- 14 Pitman A. J., The evolution of, and revolution in, land surface schemes designed for climate models, International Journal of Climatology. (2003) 23, no. 5, 479–510, https://doi.org/10.1002/joc.893, 2-s2.0-0038752562.
- 15 Dickinson R. E., Kennedy P., and Henderson-Sellers A., Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e As Coupled to the NCAR Community Climate Model, 1993, Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colo, USA.
- 16 Ek M. B., Mitchell K. E., Lin Y., Rogers E., Grunmann P., Koren V., Gayno G., and Tarpley J. D., Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, Journal of Geophysical Research D: Atmospheres. (2003) 108, no. 22, article 8851, 2-s2.0-1442314273.
- 17 Friend A. D. and Kiang N. Y., Land surface model development for the GISS GCM: effects of improved canopy physiology on simulated climate, Journal of Climate. (2005) 18, no. 15, 2883–2902, https://doi.org/10.1175/jcli3425.1, 2-s2.0-25444530916.
- 18 Viviroli D., Dürr H. H., Messerli B., Meybeck M., and Weingartner R., Mountains of the world, water towers for humanity: typology, mapping, and global significance, Water Resources Research. (2007) 43, no. 7, W07447, https://doi.org/10.1029/2006wr005653, 2-s2.0-36749095779.
- 19 Lyons T. J. and Halldin S., Surface heterogeneity and the spatial variation of fluxes, Agricultural and Forest Meteorology. (2004) 121, no. 3-4, 153–165, https://doi.org/10.1016/j.agrformet.2003.08.031, 2-s2.0-0742305564.
- 20 Williams M., Richardson A. D., Reichstein M., Stoy P. C., Peylin P., Verbeeck H., Carvalhais N., Jung M., Hollinger D. Y., Kattge J., Leuning R., Luo Y., Tomelleri E., Trudinger C. M., and Wang Y.-P., Improving land surface models with FLUXNET data, Biogeosciences. (2009) 6, no. 7, 1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2-s2.0-69249208725.
- 21 Sellers P. J., Dickinson R. E., Randall D. A., Betts A. K., Hall F. G., Berry J. A., Collatz G. J., Denning A. S., Mooney H. A., Nobre C. A., Sato N., Field C. B., and Henderson-Sellers A., Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science. (1997) 275, no. 5299, 502–509, https://doi.org/10.1126/science.275.5299.502, 2-s2.0-0030616449.
- 22 Manabe S., Climate and the ocean circulation, Monthly Weather Review. (1969) 97, no. 11, 739–774.
- 23 Deardorff J. W., Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, Journal of Geophysical Research. (1978) 83, no. C4, 1889–1903, https://doi.org/10.1029/jc083ic04p01889.
- 24 Bhumralkar C. M., Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model, Journal of Applied Meteorology. (1975) 14, no. 7, 1246–1258, https://doi.org/10.1175/1520-0450(1975)01460;1246:neotco62;2.0.co;2.
- 25 Sellers P. J., Mintz Y., Sud Y. C., and Dalcher A., A simple biosphere model (SiB) for use within general circulation models, Journal of the Atmospheric Sciences. (1986) 43, no. 6, 505–531, https://doi.org/10.1175/1520-0469(1986)04360;0505:asbmfu60;2.0.co;2, 2-s2.0-0022825341.
- 26 Noilhan J. and Planton S., A simple parameterization of land surface processes for meteorological models, Monthly Weather Review. (1989) 117, no. 3, 536–549, https://doi.org/10.1175/1520-0493(1989)117x0003C;0536:aspols>2.0.co;2, 2-s2.0-0024837527.
- 27 Xue Y., Sellers P. J., Kinter J. L., and Shukla J., A simplified biosphere model for global climate studies, Journal of Climate. (1991) 4, no. 3, 345–364.
- 28 Gorham E., Northern peatlands: role in the carbon cycle and probable responses to climatic warming, Ecological Applications. (1991) 1, no. 2, 182–195, https://doi.org/10.2307/1941811, 2-s2.0-0026271247.
- 29 Cox P. M., Betts R. A., Jones C. D., Spall S. A., and Totterdell I. J., Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature. (2000) 408, no. 6809, 184–187, https://doi.org/10.1038/35041539, 2-s2.0-0034626765.
- 30 Collatz G. J., Ball J. T., Grivet C., and Berry J. A., Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer, Agricultural and Forest Meteorology. (1991) 54, no. 2–4, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 2-s2.0-33847504748.
- 31 Bonan G. B., Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science. (2008) 320, no. 5882, 1444–1449, https://doi.org/10.1126/science.1155121, 2-s2.0-45849092625.
- 32 Chen F. and Dudhia J., Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity, Monthly Weather Review. (2001) 129, no. 4, 569–585, 2-s2.0-0035303091.
- 33 Sato N., Sellers P. J., Randall D. A., and et al, Effects of implementing the simple biosphere model in a general circulation model, Journal of the Atmospheric Sciences. (1989) 46, no. 18, 2757–2782, 2-s2.0-0024926837.
- 34 Henderson-Sellers A., Pitman A. J., Love P. K., Irannejad P., and Chen T. H., The project for intercomparison of land surface parameterization schemes (PILPS): phases 2 and 3, Bulletin of the American Meteorological Society. (1995) 76, no. 4, 489–503, https://doi.org/10.1175/1520-0477(1995)076x0003C;0489:tpfiol>2.0.co;2, 2-s2.0-0029471935.
- 35 Barlage M., Chen F., Tewari M., Ikeda K., Gochis D., Dudhia J., Rasmussen R., Livneh B., Ek M., and Mitchell K., Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains, Journal of Geophysical Research: Atmospheres. (2010) 115, no. 22, D22101, https://doi.org/10.1029/2009JD013470, 2-s2.0-78649344259.
- 36 Huang C., Li X., and Lu L., Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter, Remote Sensing of Environment. (2008) 112, no. 4, 1320–1336, https://doi.org/10.1016/j.rse.2007.03.028, 2-s2.0-40649129474.
- 37 Kumar A., Chen F., Niyogi D., Alfieri J. G., Ek M., and Mitchell K., Evaluation of a photosynthesis-based canopy resistance formulation in the noah land-surface model, Boundary-Layer Meteorology. (2011) 138, no. 2, 263–284, https://doi.org/10.1007/s10546-010-9559-z, 2-s2.0-78651395624.
- 38 Oleson K., Lawrence D. M., Bonan G. B., Drewniak B., Huang M., Koven C. D., Levis S., Li F., Riley W. J., Subin Z. M., Swenson S., Thornton P. E., Bozbiyik A., Fisher R., Heald C. L., Kluzek E., Lamarque J.-F., Lawrence P. J., Leung L. R., Lipscomb W., Muszala S. P., Ricciuto D. M., Sacks W. J., Sun Y., Tang J., and Yang Z.-L., Technical description of version 4.5 of the Community Land Model (CLM), NCAR Technical Note, 2013, no. NCAR/TN-503+STR.
- 39 Dai Y., Zeng X., Dickinson R. E., Baker I., Bonan G. B., Bosilovich M. G., Denning A. S., Dirmeyer P. A., Houser P. R., Niu G., Oleson K. W., Schlosser C. A., and Yang Z.-L., The common land model, Bulletin of the American Meteorological Society. (2003) 84, no. 8, 1013–1023, https://doi.org/10.1175/bams-84-8-1013, 2-s2.0-0042412325.
- 40 Bonan G. B., Levis S., Kergoat L., and Oleson K. W., Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models, Global Biogeochemical Cycles. (2002) 16, no. 2, 2-s2.0-0036626710.
- 41
Lawrence P. J. and
Chase T. N., Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0), Journal of Geophysical ResearchG: Biogeosciences. (2007) 112, no. 1, https://doi.org/10.1029/2006JG000168.
10.1029/2006JG000168 Google Scholar
- 42 Nijssen B., Schnur R., and Lettenmaier D. P., Global retrospective estimation of soil moisture using the variable infiltration capacity land surface modl, 1980-93, Journal of Climate. (2001) 14, no. 8, 1790–1808, https://doi.org/10.1175/1520-0442(2001)014x0003C;1790:greosm>2.0.co;2, 2-s2.0-0035872004.
- 43 Ke Y., Leung L. R., Huang M., and Li H., Enhancing the representation of subgrid land surface characteristics in land surface models, Geoscientific Model Development. (2013) 6, no. 5, 1609–1622, https://doi.org/10.5194/gmd-6-1609-2013, 2-s2.0-84885819319.
- 44 Leung L. R. and Ghan S. J., Parameterizing subgrid orographic precipitation and surface cover in climate models, Monthly Weather Review. (1998) 126, no. 12, 3271–3291, 2-s2.0-0032995256.
- 45 Wright I. J., Reich P. B., Westoby M., Ackerly D. D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornellssen J. H. C., Diemer M., Flexas J., Garnier E., Groom P. K., Gulias J., Hikosaka K., Lamont B. B., Lee T., Lee W., Lusk C., Midgley J. J., Navas M.-L., Niinemets Ü., Oleksyn J., Osada H., Poorter H., Pool P., Prior L., Pyankov V. I., Roumet C., Thomas S. C., Tjoelker M. G., Veneklaas E. J., and Villar R., The worldwide leaf economics spectrum, Nature. (2004) 428, no. 6985, 821–827, https://doi.org/10.1038/nature02403, 2-s2.0-11144357645.
- 46 Band L. E., Peterson D. L., Running S. W., Coughlan J., Lammers R., Dungan J., and Nemani R., Forest ecosystem processes at the watershed scale: basis for distributed simulation, Ecological Modelling. (1991) 56, 171–196, https://doi.org/10.1016/0304-3800(91)90199-b, 2-s2.0-0026292685.
- 47 Running S. W. and Coughlan J. C., A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes, Ecological Modelling. (1988) 42, no. 2, 125–154, https://doi.org/10.1016/0304-3800(88)90112-3, 2-s2.0-0024255197.
- 48 Wigmosta M. S., Vail L. W., and Lettenmaier D. P., A distributed hydrology-vegetation model for complex terrain, Water Resources Research. (1994) 30, no. 6, 1665–1680, https://doi.org/10.1029/94wr00436, 2-s2.0-0028667763.
- 49 Yao H., Hashino M., and Yoshida H., Modeling energy and water cycle in a forested headwater basin, Journal of Hydrology. (1996) 174, no. 3-4, 221–234, https://doi.org/10.1016/0022-1694(95)02766-1, 2-s2.0-0029657535.
- 50 Choi H. I., Liang X.-Z., and Kumar P., A conjunctive surface-subsurface flow representation for mesoscale land surface models, Journal of Hydrometeorology. (2013) 14, no. 5, 1421–1442, https://doi.org/10.1175/jhm-d-12-0168.1, 2-s2.0-84885912258.
- 51
Beven K. J. and
Kirkby M. J., A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d′appel variable de l′hydrologie du bassin versant, Hydrological Sciences Bulletin. (1979) 24, no. 1, 43–69, https://doi.org/10.1080/02626667909491834.
10.1080/02626667909491834 Google Scholar
- 52 Beven K., Lamb R., Quinn P., Romanowicz R., Freer J., and Singh V., Topmodel, Computer Models of Watershed Hydrology, 1995, 627–668.
- 53 Famiglietti J. S., Wood E. F., Sivapalan M., and Thongs D. J., A catchment scale water balance model for FIFE, Journal of Geophysical Research. (1992) 97, no. 17, 7–18, 2-s2.0-0027091260.
- 54 Band L. E., Patterson P., Nemani R., and Running S. W., Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology, Agricultural and Forest Meteorology. (1993) 63, no. 1-2, 93–126, https://doi.org/10.1016/0168-1923(93)90024-C, 2-s2.0-0027388444.
- 55 Stieglitz M., Rind D., Famiglietti J., and Rosenzweig C., An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling, Journal of Climate. (1997) 10, no. 1, 118–137, https://doi.org/10.1175/1520-0442(1997)010<0118:AEATMT>2.0.CO;2, 2-s2.0-0030725746.
- 56 Deng H. and Sun S., Incorporation of TOPMODEL into land surface model SSiB and numerically testing the effects of the corporation at basin scale, Science China Earth Sciences. (2012) 55, no. 10, 1731–1741, https://doi.org/10.1007/s11430-012-4431-2, 2-s2.0-84867047777.
- 57 Bouilloud L., Chancibault K., Vincendon B., Ducrocq V., Habets F., Saulnier G.-M., Anquetin S., Martin E., and Noilhan A. J., Coupling the ISBA land surface model and the TOPMODEL hydrological model for mediterranean flash-flood forecasting: description, calibration, and validation, Journal of Hydrometeorology. (2010) 11, no. 2, 315–333, https://doi.org/10.1175/2009jhm1163.1, 2-s2.0-77953333122.
- 58 Lehning M., Völksch I., Gustafsson D., Nguyen T. A., Stähli M., and Zappa M., ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology, Hydrological Processes. (2006) 20, no. 10, 2111–2128, https://doi.org/10.1002/hyp.6204, 2-s2.0-33745844361.
- 59 MacDonald R. J., Byrne J. M., and Kienzle S. W., A physically based daily hydrometeorological model for complex mountain terrain, Journal of Hydrometeorology. (2009) 10, no. 6, 1430–1446, https://doi.org/10.1175/2009JHM1093.1, 2-s2.0-77952634332.
- 60 Chen H., Nan Z., Wang S., and Zhao L., Simulating the water-heat processes on typical sites in the mountainous areas of the upper reaches of the Heihe river, Journal of Glaciology and Geocryology. (2013) 35, no. 1, 126–137.
- 61 Duan Q., Schaake J., Andréassian V., Franks S., Goteti G., Gupta H. V., Gusev Y. M., Habets F., Hall A., Hay L., Hogue T., Huang M., Leavesley G., Liang X., Nasonova O. N., Noilhan J., Oudin L., Sorooshian S., Wagener T., and Wood E. F., Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops, Journal of Hydrology. (2006) 320, no. 1-2, 3–17, https://doi.org/10.1016/j.jhydrol.2005.07.031, 2-s2.0-33644551546.
- 62 Hansen M. C., Defries R. S., Townshend J. R. G., and Sohlberg R., Global land cover classification at 1 km spatial resolution using a classification tree approach, International Journal of Remote Sensing. (2000) 21, no. 6-7, 1331–1364, https://doi.org/10.1080/014311600210209, 2-s2.0-0034655867.
- 63 Friedl M. A., Sulla-Menashe D., Tan B., Schneider A., Ramankutty N., Sibley A., and Huang X., MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets, Remote Sensing of Environment. (2010) 114, no. 1, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2-s2.0-70350041108.
- 64
Li A.,
Lei G.,
Zhang Z.,
Bian J., and
Deng W., China land cover monitoring in mountainous regions by remote sensing technology—taking the Southwestern China as a case, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ′14), July 2014, Quebec City, Canada, IEEE, 4216–4219, https://doi.org/10.1109/IGARSS.2014.6947418.
10.1109/IGARSS.2014.6947418 Google Scholar
- 65 Zhou L., Dickinson R. E., Tian Y., Zeng X., Dai Y., Yang Z.-L., Schaaf C. B., Gao F., Jin Y., Strahler A., Myneni R. B., Yu H., Wu W., and Shaikh M., Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model, Journal of Geophysical Research D: Atmospheres. (2003) 108, no. 15, article 4488, 2-s2.0-1342312412.
- 66 Ingwersen J., Steffens K., Högy P., Warrach-Sagi K., Zhunusbayeva D., Poltoradnev M., Gäbler R., Wizemann H.-D., Fangmeier A., Wulfmeyer V., and Streck T., Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand, Agricultural and Forest Meteorology. (2011) 151, no. 3, 345–355, https://doi.org/10.1016/j.agrformet.2010.11.010, 2-s2.0-78651422969.
- 67 Sahoo A. K., Dirmeyer P. A., Houser P. R., and Kafatos M., A study of land surface processes using land surface models over the Little River Experimental Watershed, Georgia, Journal of Geophysical Research: Atmospheres. (2008) 113, no. 20, https://doi.org/10.1029/2007jd009671, 2-s2.0-58149216342.
- 68 Xue Y., Zeng F. J., and Schlosser C. A., SSiB and its sensitivity to soil properties—a case study using HAPEX-Mobilhy data, Global and Planetary Change. (1996) 13, no. 1–4, 183–194, https://doi.org/10.1016/0921-8181(95)00045-3, 2-s2.0-0030447583.
- 69 Clapp R. B. and Hornberger G. M., Empirical equations for some soil hydraulic properties, Water Resources Research. (1978) 14, no. 4, 601–604, https://doi.org/10.1029/wr014i004p00601, 2-s2.0-0018004518.
- 70 Sellers P. J., Randall D. A., Collatz G. J., Berry J. A., Field C. B., Dazlich D. A., Zhang C., Collelo G. D., and Bounoua L., A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I. Model formulation, Journal of Climate. (1996) 9, no. 4, 676–705, 2-s2.0-0030480087.
- 71 Trangmar B. B., Yost R. S., and Uehara G., Application of geostatistics to spatial studies of soil properties, Advances in Agronomy. (1985) 38, no. 1, 45–94, 2-s2.0-0022225030.
- 72 Bäumler R. and Zech W., Soils of the high mountain region of Eastern Nepal: classification, distribution and soil forming processes, Catena. (1994) 22, no. 2, 85–103, https://doi.org/10.1016/0341-8162(94)90019-1, 2-s2.0-38149146600.
- 73 Immerzeel W. W., Petersen L., Ragettli S., and Pellicciotti F., The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas, Water Resources Research. (2014) 50, no. 3, 2212–2226, 2-s2.0-84895854032.
- 74 Konzelmann T., Calanca P., Müller G., Menzel L., and Lang H., Energy balance and evapotranspiration in a high mountain area during summer, Journal of Applied Meteorology. (1997) 36, no. 7, 966–973, 2-s2.0-0043008650.
- 75 Kang E., Cheng G., Song K., Jin B., Liu X., and Wang J., Simulation of energy and water balance in Soil-Vegetation-Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest China, Science in China, Series D: Earth Sciences. (2005) 48, no. 4, 538–548, https://doi.org/10.1360/02yd0428, 2-s2.0-27844594943.
- 76 Mizukami N., Clark M. P., Slater A. G., Brekke L. D., Elsner M. M., Arnold J. R., and Gangopadhyay S., Hydrologic implications of different large-scale meteorological model forcing datasets in mountainous regions, Journal of Hydrometeorology. (2014) 15, no. 1, 474–488, https://doi.org/10.1175/JHM-D-13-036.1, 2-s2.0-84894040416.
- 77 Bonan G. B., Oleson K. W., Vertenstein M., Levis S., Zeng X., Dai Y., Dickinson R. E., and Yang Z.-L., The land surface climatology of the community land model coupled to the NCAR community climate model, Journal of Climate. (2002) 15, no. 22, 3123–3149, https://doi.org/10.1175/1520-0442(2002)015x0003C;3123:tlscot>2.0.co;2, 2-s2.0-0037113343.
- 78 Dickinson R. E., Oleson K. W., Bonan G., Hoffman F., Thornton P., Vertenstein M., Yang Z.-L., and Zeng X., The Community Land Model and its climate statistics as a component of the Community Climate System Model, Journal of Climate. (2006) 19, no. 11, 2302–2324, https://doi.org/10.1175/JCLI3742.1, 2-s2.0-31344460981.
- 79 Steiner A. L., Pal J. S., Giorgi F., Dickinson R. E., and Chameides W. L., The coupling of the Common Land Model (CLM0) to a regional climate model (RegCM), Theoretical and Applied Climatology. (2005) 82, no. 3-4, 225–243, https://doi.org/10.1007/s00704-005-0132-5, 2-s2.0-24144468110.
- 80 Daly C., Guidelines for assessing the suitability of spatial climate data sets, International Journal of Climatology. (2006) 26, no. 6, 707–721, https://doi.org/10.1002/joc.1322, 2-s2.0-33646439129.
- 81 Wood E. F., Roundy J. K., Troy T. J., van Beek L., Bierkens M. F., Blyth E., de Roo A., and Doll P., Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth′s terrestrial water, Water Resources Research. (2011) 47, no. 5, 1–10.
- 82 Helbig N. and Löwe H., Shortwave radiation parameterization scheme for subgrid topography, Journal of Geophysical Research: Atmospheres. (2012) 117, no. 3, D03112, https://doi.org/10.1029/2011jd016465, 2-s2.0-84856976114.
- 83 Plüss C. and Ohmura A., Longwave radiation on snow-covered mountainous surfaces, Journal of Applied Meteorology. (1997) 36, no. 6, 818–824, https://doi.org/10.1175/1520-0450-36.6.818, 2-s2.0-0031395661.
- 84 Hauge G. and Hole L. R., Implementation of slope irradiance in Mesoscale Model version 5 and its effect on temperature and wind fields during the breakup of a temperature inversion, Journal of Geophysical Research: Atmospheres. (2003) 108, no. 2.
- 85 Stahl K., Moore R. D., Floyer J. A., Asplin M. G., and McKendry I. G., Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density, Agricultural and Forest Meteorology. (2006) 139, no. 3-4, 224–236, https://doi.org/10.1016/j.agrformet.2006.07.004, 2-s2.0-33749353110.
- 86 Benavides R., Montes F., Rubio A., and Osoro K., Geostatistical modelling of air temperature in a mountainous region of Northern Spain, Agricultural and Forest Meteorology. (2007) 146, no. 3-4, 173–188, https://doi.org/10.1016/j.agrformet.2007.05.014, 2-s2.0-34548120275.
- 87 Prentice I. C., Cramer W., Harrison S. P., Leemans R., Monserud R. A., and Solomon A. M., A global biome model based on plant physiology and dominance, soil properties and climate, Journal of Biogeography. (1992) 19, no. 2, 117–134, https://doi.org/10.2307/2845499, 2-s2.0-0027089143.
- 88 Maurer E. P., Wood A. W., Adam J. C., Lettenmaier D. P., and Nijssen B., A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States, Journal of Climate. (2002) 15, no. 22, 3237–3251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2, 2-s2.0-0037113274.
- 89 Minder J. R., Mote P. W., and Lundquist J. D., Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains, Journal of Geophysical Research: Atmospheres. (2010) 115, no. 14, D14122, https://doi.org/10.1029/2009jd013493, 2-s2.0-77955349985.
- 90 Liston G. E. and Elder K., A meteorological distribution system for high-resolution terrestrial modeling (MicroMet), Journal of Hydrometeorology. (2006) 7, no. 2, 217–234, https://doi.org/10.1175/jhm486.1, 2-s2.0-33646539843.
- 91 Zabel F., Mauser W., Marke T., Pfeiffer A., Zängl G., and Wastl C., Inter-comparison of two land-surface models applied at different scales and their feedbacks while coupled with a regional climate model, Hydrology and Earth System Sciences. (2012) 16, no. 3, 1017–1031, https://doi.org/10.5194/hess-16-1017-2012, 2-s2.0-84859192024.
- 92
Marke T.,
Mauser W.,
Pfeiffer A.,
Zängl G., and
Jacob D., The effect of downscaling on river runoff modeling: a hydrological case study in the Upper Danube Watershed, Hydrology and Earth System Sciences Discussions. (2011) 8, no. 3, 6331–6384, https://doi.org/10.5194/hessd-8-6331-2011.
10.5194/hessd-8-6331-2011 Google Scholar
- 93 Liang X. and Xie Z., A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models, Advances in Water Resources. (2001) 24, no. 9-10, 1173–1193, https://doi.org/10.1016/S0309-1708(01)00032-X, 2-s2.0-0035518626.
- 94 Wang L. and Chen D., Improvement and eexperiment of hydrological process on GRAPES NOAH-LSM land surface model, Chinese Journal of Atmospheric Sciences. (2013) 37, no. 6, 1179–1186.
- 95 Tesfa T. K., Li H.-Y., Leung L. R., Huang M., Ke Y., Sun Y., and Liu Y., A subbasin-based framework to represent land surface processes in an Earth system model, Geoscientific Model Development. (2014) 7, no. 3, 947–963, https://doi.org/10.5194/gmd-7-947-2014, 2-s2.0-84901228363.
- 96 Yuan F., Xie Z., Liu Q., Yang H., Su F., Liang X., and Ren L., An application of the VIC-3L land surface model and remote sensing data in simulating streamflow for the Hanjiang River basin, Canadian Journal of Remote Sensing. (2004) 30, no. 5, 680–690, https://doi.org/10.5589/m04-032, 2-s2.0-11144231503.
- 97 Choi H. I., Application of a land surface model using remote sensing data for high resolution simulations of terrestrial processes, Remote Sensing. (2013) 5, no. 12, 6838–6856, https://doi.org/10.3390/rs5126838, 2-s2.0-84891465975.
- 98 Ghilain N., Arboleda A., Sepulcre-Cantò G., Batelaan O., Ardö J., and Gellens-Meulenberghs F., Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite, Hydrology and Earth System Sciences. (2012) 16, no. 8, 2567–2583, https://doi.org/10.5194/hess-16-2567-2012, 2-s2.0-84869415412.
- 99 Barrett D. J., Hill I. M. J., Hutley L. B., Beringer J., Xu J. H., Cook G. D., Carter J. O., and Williams R. J., Prospects for improving savanna biophysical models by using multiple-constraints model-data assimilation methods, Australian Journal of Botany. (2005) 53, no. 7, 689–714, https://doi.org/10.1071/bt04139, 2-s2.0-28644445405.
- 100 Renzullo L. J., Barrett D. J., Marks A. S., Hill M. J., Guerschman J. P., Mu Q., and Running S. W., Multi-sensor model-data fusion for estimation of hydrologic and energy flux parameters, Remote Sensing of Environment. (2008) 112, no. 4, 1306–1319, https://doi.org/10.1016/j.rse.2007.06.022, 2-s2.0-40649104112.
- 101 Flerchinger G. N., Marks D., Reba M. L., Yu Q., and Seyfried M. S., Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment, Hydrology and Earth System Sciences. (2010) 14, no. 6, 965–978, https://doi.org/10.5194/hess-14-965-2010, 2-s2.0-77953821499.
- 102 Chen F., Mitchell K., Schaake J., Xue Y., Pan H.-L., Koren V., Duan Q. Y., Ek M., and Betts A., Modeling of land surface evaporation by four schemes and comparison with FIFE observations, Journal of Geophysical Research: Atmospheres. (1996) 101, no. 3, 7251–7268, https://doi.org/10.1029/95jd02165, 2-s2.0-0030465032.
- 103 Rhoads J., Dubayah R., Lettenmaier D., O′Donnell G., and Lakshmi V., Validation of land surface models using satellite-derived surface temperature, Journal of Geophysical Research: Atmospheres. (2001) 106, no. 17, 20085–20099, 2001JD900196, https://doi.org/10.1029/2001jd900196, 2-s2.0-0034773230.
- 104 Wei H., Xia Y., Mitchell K. E., and Ek M. B., Improvement of the Noah land surface model for warm season processes: evaluation of water and energy flux simulation, Hydrological Processes. (2013) 27, no. 2, 297–303, https://doi.org/10.1002/hyp.9214, 2-s2.0-84872177344.
- 105 Beer C., Reichstein M., Tomelleri E., Ciais P., Jung M., Carvalhais N., Rödenbeck C., Arain M. A., Baldocchi D., Bonan G. B., Bondeau A., Cescatti A., Lasslop G., Lindroth A., Lomas M., Luyssaert S., Margolis H., Oleson K. W., Roupsard O., Veenendaal E., Viovy N., Williams C., Woodward F. I., and Papale D., Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science. (2010) 329, no. 5993, 834–838, https://doi.org/10.1126/science.1184984, 2-s2.0-77955623505.
- 106 Bonan G. B., Lawrence P. J., Oleson K. W., Levis S., Jung M., Reichstein M., Lawrence D. M., and Swenson S. C., Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data, Journal of Geophysical Research G: Biogeosciences. (2011) 116, no. 2, https://doi.org/10.1029/2010JG001593.
- 107 Randerson J. T., Hoffman F. M., Thornton P. E., Mahowald N. M., Lindsay K., Lee Y.-H., Nevison C. D., Doney S. C., Bonan G., Stöckli R., Covey C., Running S. W., and Fung I. Y., Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models, Global Change Biology. (2009) 15, no. 10, 2462–2484, https://doi.org/10.1111/j.1365-2486.2009.01912.x, 2-s2.0-70149105689.
- 108 Kelley D., Prentice I. C., Harrison S. et al., A comprehensive benchmarking system for evaluating global vegetation models, Biogeosciences Discussions. (2012) 9, no. 11.
- 109 Entin J. K., Robock A., Vinnikov K. Y., Zabelin V., Liu S., Namkhai A., and Adyasuren T., Evaluation of global soil wetness project soil moisture simulations, Journal of the Meteorological Society of Japan. (1999) 77, 183–198.
- 110 Mclaughlin D., O′Neill A., Derber J., and Kamachi M., Opportunities for enhanced collaboration within the data assimilation community, Quarterly Journal of the Royal Meteorological Society. (2006) 131, no. 613, 3683–3693, https://doi.org/10.1256/qj.05.89, 2-s2.0-34547317797.
- 111 Rodell M., Houser P. R., Jambor U., Gottschalck J., Mitchell K., Meng C.-J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J. K., Walker J. P., Lohmann D., and Toll D., The global land data assimilation system, Bulletin of the American Meteorological Society. (2004) 85, no. 3, 381–394, https://doi.org/10.1175/bams-85-3-381, 2-s2.0-11144356588.
- 112 Reichle R. H., Kumar S. V., Mahanama S. P. P., Koster R. D., and Liu Q., Assimilation of satellite-derived skin temperature observations into land surface models, Journal of Hydrometeorology. (2010) 11, no. 5, 1103–1122, https://doi.org/10.1175/2010jhm1262.1, 2-s2.0-78049312763.
- 113 Han E., Merwade V., and Heathman G. C., Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model, Journal of Hydrology. (2012) 416-417, 98–117, https://doi.org/10.1016/j.jhydrol.2011.11.039, 2-s2.0-84855288520.
- 114 Houser P., de Lannoy G. M., and Walker J., W. Lahoz, B. Khattatov, and R. Menard, Land surface data assimilation, Data Assimilation, 2010, Springer, Berlin, Germany, 549–597.
- 115 Claussen M., Brovkin V., and Ganopolski A., Biophysical versus biogeochemical feedbacks of large-scale land cover change, Geophysical Research Letters. (2001) 28, no. 6, 1011–1014, https://doi.org/10.1029/2000gl012471, 2-s2.0-0035866877.
- 116 Ahlström A., Xia J., Arneth A., Luo Y., and Smith B., Importance of vegetation dynamics for future terrestrial carbon cycling, Environmental Research Letters. (2015) 10, no. 5, 054019, https://doi.org/10.1088/1748-9326/10/5/054019.
- 117 Prentice I., Liang X., Medlyn B., and Wang Y.-P., Reliable, robust and realistic: the three R′s of next-generation land-surface modelling, Atmospheric Chemistry and Physics. (2015) 15, no. 10, 5987–6005.