Highly Sensitive CO Gas Sensor from Defective Graphene: Role of van der Waals Interactions
Yingda Jiang
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorSha Yang
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorShuang Li
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorCorresponding Author
Wei Liu
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorYonghao Zhao
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorYingda Jiang
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorSha Yang
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorShuang Li
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorCorresponding Author
Wei Liu
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorYonghao Zhao
Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China njust.edu.cn
Search for more papers by this authorAbstract
Layered materials, such as graphene, have attracted increasing interests since they can be extensively used in gas sensors, spintronic devices, and transparent electrodes. Although larger size of graphene sheets has been fabricated, in reality, the existence of the defects in layered materials is almost inevitable during the manufacturing process. Here, we performed the state-of-the-art density-functional theory calculations to study the interactions between CO molecule and the pristine and defective graphene layers, with the aim of designing a CO gas sensor with higher sensitivity. The van der Waals interactions predominate the binding between the CO gas and the sensor, and also significantly enhance the stability of the system. The defective graphene strongly interacts with CO, and thus enhances the sensitivity of the graphene and further tunes the electronic and magnetic properties of the entire system. Our computed results clearly demonstrate that the defective graphene could be a good sensor for gas molecules.
References
- 1 Leenaerts O., Partoens B., and Peeters F. M., Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study, Physical Review B. (2008) 77, 125416, https://doi.org/10.1103/physrevb.77.125416.
- 2 Schedin F., Geim A. K., Morozov S. V., Hill E. W., Blake P., Katsnelson M. I., and Novoselov K. S., Detection of individual gas molecules adsorbed on graphene, Nature Materials. (2007) 6, no. 9, 652–655, https://doi.org/10.1038/nmat1967, 2-s2.0-34548388792.
- 3 Choi H., Choi J. S., Kim J.-S., Choe J.-H., Chung K. H., Shin J.-W., Kim J. T., Youn D.-H., Kim K.-C., Lee J.-I., Choi S.-Y., Kim P., Choi C.-G., and Yu Y.-J., Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers, Small. (2014) 10, no. 18, 3685–3691, https://doi.org/10.1002/smll.201400434.
- 4 Hu W., Xia N., Wu X., Li Z., and Yang J., Silicene as a highly sensitive molecule sensor for NH3, NO and NO2, Physical Chemistry Chemical Physics. (2014) 16, 6957–6962, https://doi.org/10.1039/c3cp55250k.
- 5 Mazzamuto G., Tabani A., Pazzagli S., Rizvi S., Reserbat-Plantey A., Schädler K., Navickaite G., Gaudreau L., Cataliotti F. S., Koppens F., and Toninelli C., Single-molecule study for a graphene-based nano-position sensor, New Journal of Physics. (2014) 16, 113007, https://doi.org/10.1088/1367-2630/16/11/113007, 2-s2.0-84910112851.
- 6 Reshak A. H. and Auluck S., Adsorbing H2S onto a single graphene sheet: a possible gas sensor, Journal of Applied Physics. (2014) 116, 103702, https://doi.org/10.1063/1.4894840.
- 7 Shao L., Chen G., Ye H., Niu H., Wu Y., Zhu Y., and Ding B., Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant, Physics Letters A. (2014) 378, no. 7-8, 667–671, https://doi.org/10.1016/j.physleta.2013.12.042.
- 8 Kulkarni G. S., Reddy K., Zhong Z., and Fan X., Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection, Nature Communications. (2014) 5, article 4376, https://doi.org/10.1038/ncomms5376.
- 9 Yuan W., Liu A., Huang L., Li C., and Shi G., High-performance NO2 sensors based on chemically modified graphene, Advanced Materials. (2013) 25, no. 5, 766–771, https://doi.org/10.1002/adma.201203172.
- 10 Bai L. and Zhou Z., Computational study of B- or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors, Carbon. (2007) 45, no. 10, 2105–2110, https://doi.org/10.1016/j.carbon.2007.05.019, 2-s2.0-34547737013.
- 11 Matranga C., Chen L., Bockrath B., and Johnson J. K., Displacement of CO2 by Xe in single-walled carbon nanotube bundles, Physical Review B. (2004) 70, no. 16, 7, 165416, https://doi.org/10.1103/PhysRevB.70.165416.
- 12 Da Silva L. B., Fagan S. B., and Mota R., Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules, Nano Letters. (2004) 4, no. 1, 65–67, https://doi.org/10.1021/nl034873d, 2-s2.0-0842330473.
- 13 Robinson J. A., Snow E. S., Badescu Ş. C., Reinecke T. L., and Perkins F. K., Role of defects in single-walled carbon nanotube chemical sensors, Nano Letters. (2006) 6, no. 8, 1747–1751, https://doi.org/10.1021/nl0612289, 2-s2.0-33748329692.
- 14 Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., and Firsov A. A., Electric field in atomically thin carbon films, Science. (2004) 306, no. 5696, 666–669, https://doi.org/10.1126/science.1102896, 2-s2.0-7444220645.
- 15 Liu W., Savara A., Ren X., Ludwig W., Dostert K.-H., Schauermann S., Tkatchenko A., Freund H.-J., and Scheffler M., Toward low-temperature dehydrogenation catalysis: isophorone adsorbed on Pd(111), The Journal of Physical Chemistry Letters. (2012) 3, no. 5, 582–586, https://doi.org/10.1021/jz300117g, 2-s2.0-84863237649.
- 16 Zhang Y., Chen Y., Zhou K., Liu C., Zeng J., Zhang H., and Peng Y., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study, Nanotechnology. (2009) 20, no. 18, 185504, https://doi.org/10.1088/0957-4484/20/18/185504.
- 17 Lv R., dos Santos M. C., Antonelli C., Feng S., Fujisawa K., Berkdemir A., Elías A. L., Perea-Lopez N., Terrones M., Cruz-Silva R., López-Urías F., and Terrones H., Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing, Advanced Materials. (2014) 26, no. 45, 7593–7599, https://doi.org/10.1002/adma.201403537, 2-s2.0-84914129133.
- 18 Liu W., Tkatchenko A., and Scheffler M., Modeling adsorption and reactions of organic molecules at metal surfaces, Accounts of Chemical Research. (2014) 47, no. 11, 3369–3377, https://doi.org/10.1021/ar500118y, 2-s2.0-84909597195.
- 19 Liu W., Ruiz V. G., Zhang G.-X., Santra B., Ren X., Scheffler M., and Tkatchenko A., Structure and energetics of benzene adsorbed on transition-metal surfaces: density-functional theory with van der Waals interactions including collective substrate response, New Journal of Physics. (2013) 15, 053046, https://doi.org/10.1088/1367-2630/15/5/053046, 2-s2.0-84879022212.
- 20
Liu W.,
Carrasco J.,
Santra B.,
Michaelides A.,
Scheffler M., and
Tkatchenko A., Benzene adsorbed on metals: concerted effect of covalency and van der Waals bonding, Physical Review B—Condensed Matter and Materials Physics. (2012) 86, no. 24, 245405, https://doi.org/10.1103/physrevb.86.245405, 2-s2.0-84871062092.
10.1103/PhysRevB.86.245405 Google Scholar
- 21 Hohenberg P. and Kohn W., Inhomogeneous electron gas, Physical Review B. (1964) 136, no. 3, B864–B871, https://doi.org/10.1103/physrev.136.b864.
- 22 Kohn W. and Sham L. J., Self-consistent equations including exchange and correlation effects, Physical Review A. (1965) 140, A1133, https://doi.org/10.1103/physrev.140.a1133.
- 23 Kresse G. and Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science. (1996) 6, no. 1, 15–50, https://doi.org/10.1016/0927-0256(96)00008-0, 2-s2.0-0030190741.
- 24 Blöchl P. E., Projector augmented-wave method, Physical Review B. (1994) 50, no. 24, 17953–17979, https://doi.org/10.1103/physrevb.50.17953, 2-s2.0-25744460922.
- 25 Perdew J. P., Burke K., and Ernzerhof M., Generalized gradient approximation made simple, Physical Review Letters. (1996) 77, no. 18, article 3865, https://doi.org/10.1103/physrevlett.77.3865, 2-s2.0-4243943295.
- 26 Tkatchenko A. and Scheffler M., Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Physical Review Letters. (2009) 102, 073005, https://doi.org/10.1103/physrevlett.102.073005.
- 27 Grimme S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry. (2006) 27, no. 15, 1787–1799, https://doi.org/10.1002/jcc.20495, 2-s2.0-33750559983.
- 28 Grimme S., Antony J., Ehrlich S., and Krieg H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics. (2010) 132, no. 15, 154104, https://doi.org/10.1063/1.3382344.
- 29 Klimeš J., Bowler D. R., and Michaelides A., Chemical accuracy for the van der Waals density functional, Journal of Physics: Condensed Matter. (2010) 22, no. 2, 022201, https://doi.org/10.1088/0953-8984/22/2/022201.
- 30 Klimeš J., Bowler D. R., and Michaelides A., Van der Waals density functionals applied to solids, Physical Review B. (2011) 83, no. 19, 13, 195131, https://doi.org/10.1103/physrevb.83.195131.
- 31
Cooper D. R.,
D’Anjou B.,
Ghattamaneni N.,
Harack B.,
Hilke M.,
Horth A.,
Majlis N.,
Massicotte M.,
Vandsburger L.,
Whiteway E., and
Yu V., Experimental review of graphene, ISRN Condensed Matter Physics. (2012) 2012, 56, 501686, https://doi.org/10.5402/2012/501686.
10.5402/2012/501686 Google Scholar
- 32 Luo Y., CRC Handbook of Chemistry and Physics, 2010, CRC Press, Boca Raton, Fla, USA.
- 33 Zhang S., Zhou J., Wang Q., Chen X., Kawazoe Y., and Jena P., Penta-graphene: a new carbon allotrope, Proceedings of the National Academy of Sciences. (2015) 112, no. 8, 2372–2377, https://doi.org/10.1073/pnas.1416591112.