Optimization of μc-Si1−xGex:H Single-Junction Solar Cells with Enhanced Spectral Response and Improved Film Quality
Corresponding Author
Yen-Tang Huang
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorPei-Ling Chen
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorPo-Wei Chen
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorHung-Jung Hsu
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorCheng-Hang Hsu
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorChuang-Chuang Tsai
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorCorresponding Author
Yen-Tang Huang
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorPei-Ling Chen
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorPo-Wei Chen
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorHung-Jung Hsu
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorCheng-Hang Hsu
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorChuang-Chuang Tsai
Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan nctu.edu.tw
Search for more papers by this authorAbstract
Effects of RF power on optical, electrical, and structural properties of μc-Si1−xGex:H films was reported. Raman and FTIR spectra from μc-Si1−xGex:H films reflected the variation in microstructure and bonding configuration. Unlike increasing the germane concentration for Ge incorporation, low RF power enhanced Ge incorporation efficiency in μc-Si1−xGex:H alloy. By decreasing RF power from 100 to 50 W at a fixed reactant gas ratio, the optical bandgap of μc-Si1−xGex:H was reduced owing to the increase in Ge content from 11.2 to 23.8 at.%, while Ge-related defects and amorphous phase were increased. Consequently, photo conductivity of 1.62 × 10−5 S/cm was obtained for the μc-Si1−xGex:H film deposited at 60 W. By applying 0.9 μm thick μc-Si1−xGex:H absorber with XC of 48% and [Ge] of 16.4 at.% in the single-junction cell, efficiency of 6.18% was obtained. The long-wavelength response of μc-Si1−xGex:H cell was significantly enhanced compared with the μc-Si:H cell. In the case of tandem cells, 0.24 μm a-Si:H/0.9 μm μc-Si1−xGex:H tandem cell exhibited a comparable spectral response as 0.24 μm a-Si:H/1.4 μm μc-Si:H tandem cell and achieved an efficiency of 9.44%.
References
- 1 Green M. A., Third generation photovoltaics: ultra-high conversion efficiency at low cost, Progress in Photovoltaics: Research and Applications. (2001) 9, no. 2, 123–135, https://doi.org/10.1002/pip.360.
- 2 Meier J., Dubail S., Cuperus J., Kroll U., Platz R., Torres P., Selvan J. A. A., Pernet P., Beck N., Vaucher N. P., Hof C., Fischer D., Keppner H., and Shah A., Recent progress in micromorph solar cells, Journal of Non-Crystalline Solids. (1998) 227–230, no. 2, 1250–1256, https://doi.org/10.1016/s0022-3093(98)00352-4, 2-s2.0-0032065187.
- 3 Rech B., Kluth O., Repmann T., Roschek T., Springer J., Müller J., Finger F., Stiebig H., and Wagner H., New materials and deposition techniques for highly efficient silicon thin film solar cells, Solar Energy Materials and Solar Cells. (2002) 74, no. 1–4, 439–447, https://doi.org/10.1016/s0927-0248(02)00114-9, 2-s2.0-0036778583.
- 4 Ganguly G., Ikeda T., Nishimiya T., Saitoh K., Kondo M., and Matsuda A., Hydrogenated microcrystalline silicon germanium: a bottom cell material for amorphous silicon-based tandem solar cells, Applied Physics Letters. (1996) 69, no. 27, 4224, https://doi.org/10.1063/1.116993, 2-s2.0-0001159123.
- 5 Matsui T., Kondo M., Ogata K., Ozawa T., and Isomura M., Influence of alloy composition on carrier transport and solar cell properties of hydrogenated microcrystalline silicon-germanium thin films, Applied Physics Letters. (2006) 89, 142115, https://doi.org/10.1063/1.2358318.
- 6 Weber J. and Alonso M. I., Near-band-gap photoluminescence of Si-Ge alloys, Physical Review B. (1989) 40, no. 8, 5683–5693, https://doi.org/10.1103/physrevb.40.5683, 2-s2.0-0001157567.
- 7 Braunstein R., Moore A. R., and Herman F., Intrinsic optical absorption in germanium-silicon alloys, Physical Review. (1958) 109, no. 3, 695–710, https://doi.org/10.1103/PhysRev.109.695, 2-s2.0-36149024990.
- 8 Braun A., Vossier A., Katz E. A., Ekins-Daukes N. J., and Gordon J. M., Multiple-bandgap vertical-junction architectures for ultra-efficient concentrator solar cells, Energy and Environmental Science. (2012) 5, no. 9, 8523–8527, https://doi.org/10.1039/c2ee22167e, 2-s2.0-84865238099.
- 9 Isomura M., Nakahata K., Shima M., Taira S., Wakisaka K., Tanaka M., and Kiyama S., Microcrystalline silicon-germanium solar cells for multi-junction structures, Solar Energy Materials and Solar Cells. (2002) 74, no. 1–4, 519–524, https://doi.org/10.1016/s0927-0248(02)00069-7, 2-s2.0-0036778623.
- 10 Matsui T., Ogata K., Isomura M., and Kondo M., Microcrystalline silicon-germanium alloys for solar cell application: growth and material properties, Journal of Non-Crystalline Solids. (2006) 352, no. 9-20, 1255–1258, https://doi.org/10.1016/j.jnoncrysol.2005.11.144, 2-s2.0-33745472132.
- 11 Huang Y. T., Hsu H. J., Liang S. W., Hsu C. H., and Tsai C. C., Development of hydrogenated microcrystalline silicon-germanium alloys for improving long-wavelength absorption in Si-based thin-film solar cells, International Journal of Photoenergy. (2014) 2014, 7, 579176, https://doi.org/10.1155/2014/579176.
- 12 Chang C. W., Matsui T., and Kondo M., Electron spin resonance study of hydrogenated microcrystalline silicon-germanium alloy thin films, Journal of Non-Crystalline Solids. (2008) 354, no. 19–25, 2365–2368, https://doi.org/10.1016/j.jnoncrysol.2007.09.022, 2-s2.0-43049106521.
- 13 Rath J. K., Tichelaar F. D., and Schropp R. E. I., Heterogeneous growth of microcrystalline silicon germanium, Solar Energy Materials and Solar Cells. (2002) 74, no. 1–4, 553–560, https://doi.org/10.1016/s0927-0248(02)00076-4, 2-s2.0-0036777891.
- 14 Miyazaki S., Takahashi H., Yamashita H., Narasaki M., and Hirose M., Growth and characterization of microcrystalline silicon-germanium films, Journal of Non-Crystalline Solids. (2002) 299-302, no. 1, 148–152, https://doi.org/10.1016/S0022-3093(01)00948-6, 2-s2.0-17644446187.
- 15 Han D., Yue G., Lorentzen J. D., Lin J., Habuchi H., and Wang Q., Optical and electronic properties of microcrystalline silicon as a function of microcrystallinity, Journal of Applied Physics. (2000) 87, no. 4, 1882–1888, https://doi.org/10.1063/1.372108, 2-s2.0-0000372159.
- 16 Fedala A., Simon C., Coulon N., Mohammed-Brahim T., Abdeslam M., and Chami A.-C., Low temperature deposition of microcrystalline silicon germanium Si1−xGex by RF-PECVD, Physica Status Solidi C. (2010) 7, no. 3-4, 762–765, https://doi.org/10.1002/pssc.200982791, 2-s2.0-77952566768.
- 17 Luysberg M., Hapke P., Carius R., and Finger F., Structure and growth of hydrogenated microcrystalline silicon: investigation by transmission electron microscopy and Raman spectroscopy of films grown at different plasma excitation frequencies, Philosophical Magazine A. (1997) 75, no. 1, 31–47, 2-s2.0-0038969740.
- 18 Persans P. D., Ruppert A. F., Abeles B., and Tiedje T., Raman scattering study of amorphous Si-Ge interfaces, Physical Review B. (1985) 32, no. 8, 5558–5560, https://doi.org/10.1103/physrevb.32.5558, 2-s2.0-0009466796.
- 19 Ren S.-F., Cheng W., and Yu P. Y., Microscopic investigation of phonon modes in SiGe alloy nanocrystals, Physical Review B. (2004) 69, no. 23, 235327, https://doi.org/10.1103/physrevb.69.235327, 2-s2.0-42749101206.
- 20 Seah M. P., The quantitative analysis of surfaces by XPS: a review, Surface and Interface Analysis. (1980) 2, no. 6, 222–239, https://doi.org/10.1002/sia.740020607.
- 21 Giangregorio M. M., Losurdo M., Sacchetti A., Capezzuto P., and Bruno G., Correlation between structure and optical properties of Si-based alloys deposited by PECVD, Thin Solid Films. (2006) 511-512, 598–602, https://doi.org/10.1016/j.tsf.2005.11.098, 2-s2.0-33646594414.
- 22 Soppe W. J., Muffler H. J., Biebericher A. C., Devilee C., Burgers A. R., Poruba A., Hodakova L., and Vanecek M., Optical and structural properties of microcrystalline silicon, grown by microwave PECVD, Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, June 2005, Barcelona, Spain.
- 23 Alonso M. I. and Winer K., Raman spectra of c-Si1-xGex alloys, Physical Review B. (1989) 39, no. 14, 10056–10062, https://doi.org/10.1103/PhysRevB.39.10056, 2-s2.0-0000751559.
- 24 Yang Y. M., Wu X. L., Huang G. S., Hu D. S., and Siu G. G., Confinement effect of optical phonons in Si-Ge alloy nanocrystals, Physics Letters A. (2005) 338, 379–384, https://doi.org/10.1016/j.physleta.2005.02.051.
- 25 Yun S. J., Kim J. K., Lee S. H., Lee Y. J., and Lim J. W., Phase transition of hydrogenated SiGe thin films in plasma-enhanced chemical vapor deposition, Thin Solid Films. (2013) 546, 362–366, https://doi.org/10.1016/j.tsf.2013.04.071, 2-s2.0-84885301591.
- 26 Rath J. K., Franken R. H. J., Gordijn A., Schropp R. E. I., and Goedheer W. J., Growth mechanism of microcrystalline silicon at high pressure conditions, Journal of Non-Crystalline Solids. (2004) 338-340, no. 1, 56–60, https://doi.org/10.1016/j.jnoncrysol.2004.02.021, 2-s2.0-2942597946.
- 27 Berkowitz J., Ellison G. B., and Gutman D., Three methods to measure RH bond energies, The Journal of Physical Chemistry. (1994) 98, no. 11, 2744–2765, https://doi.org/10.1021/j100062a009, 2-s2.0-0041689437.
- 28 Hazra S., Middya A. R., Ray S., Malten C., and Finger F., Role of deposition parameters on the photovoltaic quality of amorphous silicon germanium alloys: correlation of microstructure with defect density and electronic transport, Journal of Physics D: Applied Physics. (2001) 34, no. 16, 2475–2481, https://doi.org/10.1088/0022-3727/34/16/312.
- 29 Morimoto A., Miura T., Kumeda M., and Shimizu T., ESR and IR studies on a-Si1-xGex:H prepared by glow discharge decomposition, Japanese Journal of Applied Physics. (1981) 20, no. 11, L833–L836, https://doi.org/10.1143/jjap.20.l833.
- 30 Paul W., Paul D. K., von Roedern B., Blake J., and Oguz S., Preferential attachment of H in amorphous hydrogenated binary semiconductors and consequent inferior reduction of pseudogap state density, Physical Review Letters. (1981) 46, no. 15, 1016–1020, https://doi.org/10.1103/physrevlett.46.1016, 2-s2.0-3643104978.
- 31 Chang C. W., Matsui T., and Kondo M., Electron spin resonance study of hydrogenated microcrystalline silicon-germanium alloy thin films, Journal of Non-Crystalline Solids. (2008) 354, no. 19-25, 2365–2368, https://doi.org/10.1016/j.jnoncrysol.2007.09.022, 2-s2.0-43049106521.
- 32 Kondo M., Fukawa M., Guo L., and Matsuda A., High rate growth of microcrystalline silicon at low temperatures, Journal of Non-Crystalline Solids. (2000) 266–269, 84–89, https://doi.org/10.1016/s0022-3093(99)00744-9, 2-s2.0-0002252601.
- 33 Vetterl O., Finger F., Carius R., Hapke P., Houben L., Kluth O., Lambertz A., Mück A., Rech B., and Wagner H., Intrinsic microcrystalline silicon: a new material for photovoltaics, Solar Energy Materials and Solar Cells. (2000) 62, no. 1, 97–108, https://doi.org/10.1016/s0927-0248(99)00140-3, 2-s2.0-0033879621.
- 34 Burrows V. A., Chabal Y. J., Higashi G. S., Raghavachari K., and Christman S. B., Infrared spectroscopy of Si(111) surfaces after HF treatment: hydrogen termination and surface morphology, Applied Physics Letters. (1988) 53, no. 11, 998–1000, https://doi.org/10.1063/1.100053, 2-s2.0-36549099751.
- 35 Bronneberg A. C., Smets A. H. M., Creatore M., and van de Sanden M. C. M., On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy, Journal of Non-Crystalline Solids. (2011) 357, no. 3, 884–887, https://doi.org/10.1016/j.jnoncrysol.2010.11.001, 2-s2.0-79251595496.
- 36 Smets A. H. M., Kessels W. M. M., and van de Sanden M. C. M., Vacancies and voids in hydrogenated amorphous silicon, Applied Physics Letters. (2003) 82, no. 10, https://doi.org/10.1063/1.1559657.
- 37 Cardona M., Vibrational spectra of hydrogen in silicon and germanium, Physica Status Solidi B. (1983) 118, no. 2, 463–481, https://doi.org/10.1002/pssb.2221180202, 2-s2.0-0020797434.
- 38 Hazra S., Middya A. R., and Ray S., The effect of variation in hydrogen dilution and RF power density on the properties of a-SiGe:H and related solar cells, Journal of Physics D: Applied Physics. (1996) 29, no. 6, 1666–1674, https://doi.org/10.1088/0022-3727/29/6/037.
- 39
Brammer T.,
Stiebig H.,
Lambertz A.,
Reetz W., and
Wagner H., Temperature dependent transport in microcrystalline PIN diodes, Materials Research Society Symposium Proceedings. (2000) 609, article A32.3, https://doi.org/10.1557/PROC-609-A32.3.
10.1557/PROC-609-A32.3 Google Scholar
- 40 Smets A. H., Matsui T., and Kondo M., High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime, Journal of Applied Physics. (2008) 104, no. 3, 034508, https://doi.org/10.1063/1.2961334.
- 41 Matsui T., Jia H., and Kondo M., Thin film solar cells incorporating microcrystalline Si1−xGex as efficient infrared absorber: an application to double junction tandem solar cells, Progress in Photovoltaics: Research and Applications. (2010) 18, no. 1, 48–53, https://doi.org/10.1002/pip.922.
- 42 Fujibayashi T., Matsui T., and Kondo M., Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating, Applied Physics Letters. (2006) 88, no. 18, 183508, https://doi.org/10.1063/1.2200741.
- 43 Huang Y. T., Hsu C. H., and Tsai C. C., Enhancement of spectral response in μc-Si1-xGex:H thin-film solar cells with a-Si:H/μc-Si:H P-type window layers, International Journal of Photoenergy. (2015) 2015, 8, 841614, https://doi.org/10.1155/2015/841614.
- 44 Hsu H. J., Liang S. W., Huang Y. T., Hsu C. H., and Tsai C. C., Applications of μc-SiOx:H as integrated n-layer and back transparent conductive oxide for a-Si:H/μc-Si:H tandem cells, Japanese Journal of Applied Physics. (2014) 53, no. 5, supplement 1, 05FV08, https://doi.org/10.7567/JJAP.53.05FV08.
- 45 Isabella O., Smets A. H. M., and Zeman M., Thin-film silicon-based quadruple junction solar cells approaching 20% conversion efficiency, Solar Energy Materials and Solar Cells. (2014) 129, 82–89, https://doi.org/10.1016/j.solmat.2014.03.021.