Immunosuppressive Drugs Affect High-Mannose/Hybrid N-Glycans on Human Allostimulated Leukocytes
Corresponding Author
Ewa Pocheć
Department of Glycoconjugate Biochemistry, Institute of Zoology, Faculty of Biology and Earth Science, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland uj.edu.pl
Search for more papers by this authorKatarzyna Bocian
Department of Immunology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland uw.edu.pl
Search for more papers by this authorMarta Ząbczyńska
Department of Glycoconjugate Biochemistry, Institute of Zoology, Faculty of Biology and Earth Science, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland uj.edu.pl
Search for more papers by this authorGrażyna Korczak-Kowalska
Department of Immunology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland uw.edu.pl
Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland wum.edu.pl
Search for more papers by this authorAnna Lityńska
Department of Glycoconjugate Biochemistry, Institute of Zoology, Faculty of Biology and Earth Science, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland uj.edu.pl
Search for more papers by this authorCorresponding Author
Ewa Pocheć
Department of Glycoconjugate Biochemistry, Institute of Zoology, Faculty of Biology and Earth Science, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland uj.edu.pl
Search for more papers by this authorKatarzyna Bocian
Department of Immunology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland uw.edu.pl
Search for more papers by this authorMarta Ząbczyńska
Department of Glycoconjugate Biochemistry, Institute of Zoology, Faculty of Biology and Earth Science, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland uj.edu.pl
Search for more papers by this authorGrażyna Korczak-Kowalska
Department of Immunology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland uw.edu.pl
Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland wum.edu.pl
Search for more papers by this authorAnna Lityńska
Department of Glycoconjugate Biochemistry, Institute of Zoology, Faculty of Biology and Earth Science, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland uj.edu.pl
Search for more papers by this authorAbstract
N-glycosylation plays an important role in the majority of physiological and pathological processes occurring in the immune system. Alteration of the type and abundance of glycans is an element of lymphocyte differentiation; it is also common in the development of immune-mediated inflammatory diseases. The N-glycosylation process is very sensitive to different environmental agents, among them the pharmacological environment of immunosuppressive drugs. Some results show that high-mannose oligosaccharides have the ability to suppress different stages of the immune response. We evaluated the effects of cyclosporin A (CsA) and rapamycin (Rapa) on high-mannose/hybrid-type glycosylation in human leukocytes activated in a two-way mixed leukocyte reaction (MLR). CsA significantly reduced the number of leukocytes covered by high-mannose/hybrid N-glycans, and the synergistic action of CsA and Rapa led to an increase of these structures on the remaining leukocytes. This is the first study indicating that β1 and β3 integrins bearing high-mannose/hybrid structures are affected by Rapa and CsA. Rapa taken separately and together with CsA changed the expression of β1 and β3 integrins and, by regulating the protein amount, increased the oligomannose/hybrid-type N-glycosylation on the leukocyte surface. We suggest that the changes in the glycosylation profile of leukocytes may promote the development of tolerance in transplantation.
References
- 1 Haslam S. M., Julien S., Burchell J. M., Monk C. R., Ceroni A., Garden O. A., and Dell A., Characterizing the glycome of the mammalian immune system, Immunology and Cell Biology. (2008) 86, no. 7, 564–573, https://doi.org/10.1038/icb.2008.54, 2-s2.0-53249130657.
- 2 Johnson J. L., Jones M. B., Ryan S. O., and Cobb B. A., The regulatory power of glycans and their binding partners in immunity, Trends in Immunology. (2013) 34, no. 6, 290–298, https://doi.org/10.1016/j.it.2013.01.006, 2-s2.0-84878553336.
- 3 Marth J. D. and Grewal P. K., Mammalian glycosylation in immunity, Nature Reviews Immunology. (2008) 8, no. 11, 874–887, https://doi.org/10.1038/nri2417, 2-s2.0-54949106904.
- 4 Rudd P. M., Wormald M. R., and Dwek R. A., Sugar-mediated ligand-receptor interactions in the immune system, Trends in Biotechnology. (2004) 22, no. 10, 524–530, https://doi.org/10.1016/j.tibtech.2004.07.012, 2-s2.0-4644299058.
- 5 Rabinovich G. A., van Kooyk Y., and Cobb B. A., Glycobiology of immune responses, Annals of the New York Academy of Sciences. (2012) 1253, no. 1, 1–15, https://doi.org/10.1111/j.1749-6632.2012.06492.x, 2-s2.0-84860252480.
- 6 Kobata A., A journey to the world of glycobiology, Glycoconjugate Journal. (2000) 17, no. 7–9, 443–464, https://doi.org/10.1023/a:1011006122704, 2-s2.0-0034442818.
- 7 Boscher C., Dennis J. W., and Nabi I. R., Glycosylation, galectins and cellular signaling, Current Opinion in Cell Biology. (2011) 23, no. 4, 383–392, https://doi.org/10.1016/j.ceb.2011.05.001, 2-s2.0-79960720473.
- 8 Ryan S. O. and Cobb B. A., Roles for major histocompatibility complex glycosylation in immune function, Seminars in Immunopathology. (2012) 34, no. 3, 425–441, https://doi.org/10.1007/s00281-012-0309-9, 2-s2.0-84866112912.
- 9
Ringeard S., Harb J., Gautier F., Menanteau J., and Meflah K., Altered glycosylation of α(s)β1 integrins from rat colon carcinoma cells decreases their interaction with fibronectin, Journal of Cellular Biochemistry. (1996) 62, no. 1, 40–49, 2-s2.0-0029824288.
10.1002/(SICI)1097-4644(199607)62:1<40::AID-JCB5>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 10 Zhang Y., Zhao J.-H., Zhang X.-Y., Guo H.-B., Liu F., and Chen H.-L., Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions, Molecular and Cellular Biochemistry. (2004) 260, no. 1, 137–146, https://doi.org/10.1023/b:mcbi.0000026065.84798.62, 2-s2.0-4344590221.
- 11 Ehlers S., DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison, European Journal of Cell Biology. (2010) 89, no. 1, 95–101, https://doi.org/10.1016/j.ejcb.2009.10.004, 2-s2.0-73649101258.
- 12 van Kooyk Y. and Rabinovich G. A., Protein-glycan interactions in the control of innate and adaptive immune responses, Nature Immunology. (2008) 9, no. 6, 593–601, https://doi.org/10.1038/ni.f.203, 2-s2.0-44049095632.
- 13 Muchmore A. V., Sathyamoorthy N., Decker J., and Sherblom A. P., Evidence that specific high-mannose oligosaccharides can directly inhibit antigen-driven T-cell responses, Journal of Leukocyte Biology. (1990) 48, no. 5, 457–464, 2-s2.0-0025116467.
- 14 Akiyama S. K., Yamada S. S., and Yamada K. M., Analysis of the role of glycosylation of the human fibronectin receptor, The Journal of Biological Chemistry. (1989) 264, no. 30, 18011–18018, 2-s2.0-0024436107.
- 15 Nacev B. A., Grassi P., Dell A., Haslam S. M., and Liu J. O., The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells, The Journal of Biological Chemistry. (2011) 286, no. 51, 44045–44056, https://doi.org/10.1074/jbc.m111.278754, 2-s2.0-83755162608.
- 16 Evans R., Patzak I., Svensson L., De Filippo K., Jones K., McDowall A., and Hogg N., Integrins in immunity, Journal of Cell Science. (2009) 122, no. 2, 215–225, https://doi.org/10.1242/jcs.019117, 2-s2.0-61949195236.
- 17 Hogg N., Laschinger M., Giles K., and McDowall A., T-cell integrins: more than just sticking points, Journal of Cell Science. (2003) 116, no. 23, 4695–4705, https://doi.org/10.1242/jcs.00876, 2-s2.0-0348036122.
- 18 Pribila J. T., Quale A. C., Mueller K. L., and Shimizu Y., Integrins and T cell-mediated immunity, Annual Review of Immunology. (2004) 22, 157–180, https://doi.org/10.1146/annurev.immunol.22.012703.104649, 2-s2.0-2542504572.
- 19 Zhang Y. and Wang H., Integrin signalling and function in immune cells, Immunology. (2012) 135, no. 4, 268–275, https://doi.org/10.1111/j.1365-2567.2011.03549.x, 2-s2.0-84863258188.
- 20 Harris E. S., McIntyre T. M., Prescott S. M., and Zimmerman G. A., The leukocyte integrins, The Journal of Biological Chemistry. (2000) 275, no. 31, 23409–23412, https://doi.org/10.1074/jbc.r000004200, 2-s2.0-0034604523.
- 21 Sims T. N. and Dustin M. L., The immunological synapse: integrins take the stage, Immunological Reviews. (2002) 186, 100–117, https://doi.org/10.1034/j.1600-065x.2002.18610.x, 2-s2.0-0036696174.
- 22 Dustin M. L. and Cooper J. A., The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling, Nature Immunology. (2000) 1, no. 1, 23–29, https://doi.org/10.1038/76877, 2-s2.0-0034232037.
- 23 Griffiths G. M., Tsun A., and Stinchcombe J. C., The immunological synapse: a focal point for endocytosis and exocytosis, Journal of Cell Biology. (2010) 189, no. 3, 399–406, https://doi.org/10.1083/jcb.201002027, 2-s2.0-77951783385.
- 24 Rose D. M., Alon R., and Ginsberg M. H., Integrin modulation and signaling in leukocyte adhesion and migration, Immunological Reviews. (2007) 218, no. 1, 126–134, https://doi.org/10.1111/j.1600-065x.2007.00536.x, 2-s2.0-34447314985.
- 25 Lacy-Hulbert A., Ueno T., Ito T., Jurewicz M., Izawa A., Smith R. N., Chase C. M., Tanaka K., Fiorina P., Russell P. S., AuchinclossH.Jr., Sayegh M. H., Hynes R. O., and Abdi R., β3 integrins regulate lymphocyte migration and cytokine responses in heart transplant rejection, American Journal of Transplantation. (2007) 7, no. 5, 1080–1090, https://doi.org/10.1111/j.1600-6143.2007.01757.x, 2-s2.0-34247525543.
- 26 Luster A. D., Alon R., and von Andrian U. H., Immune cell migration in inflammation: present and future therapeutic targets, Nature Immunology. (2005) 6, no. 12, 1182–1190, https://doi.org/10.1038/ni1275, 2-s2.0-30044447736.
- 27 Sarnacki S., Révillon Y., Fischer A., Cerf-Bensussan N., Auber F., Crétolle C., Camby C., Cavazzana-Calvo M., Müller W., Wagner N., and Brousse N., Blockade of the integrin αLβ2 but not of integrins α4 and/or β7 significantly prolongs intestinal allograft survival in mice, Gut. (2000) 47, no. 1, 97–104, https://doi.org/10.1136/gut.47.1.97, 2-s2.0-0034223569.
- 28 Gu J. and Taniguchi N., Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator, Cell Adhesion & Migration. (2008) 2, no. 4, 243–245, https://doi.org/10.4161/cam.2.4.6748, 2-s2.0-65349138881.
- 29 Daniels M. A., Hogquist K. A., and Jameson S. C., Sweet ‘n’ sour: the impact of differential glycosylation on T cell responses, Nature Immunology. (2002) 3, no. 10, 903–910, https://doi.org/10.1038/ni1002-903, 2-s2.0-0036793242.
- 30 Clark M. C. and Baum L. G., T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival, Annals of the New York Academy of Sciences. (2012) 1253, no. 1, 58–67, https://doi.org/10.1111/j.1749-6632.2011.06304.x, 2-s2.0-84860246415.
- 31 Rudd P. M., Wormald M. R., Stanfield R. L., Huang M., Mattsson N., Speir J. A., Digennaro J. A., Fetrow J. S., Dwek R. A., and Wilson I. A., Roles for glycosylation of cell surface receptors involved in cellular immune recognition, Journal of Molecular Biology. (1999) 293, no. 2, 351–366, https://doi.org/10.1006/jmbi.1999.3104, 2-s2.0-0032742944.
- 32 Dube D. H. and Bertozzi C. R., Glycans in cancer and inflammation—potential for therapeutics and diagnostics, Nature Reviews Drug Discovery. (2005) 4, no. 6, 477–488, https://doi.org/10.1038/nrd1751, 2-s2.0-20844437106.
- 33 Ohtsubo K. and Marth J. D., Glycosylation in cellular mechanisms of health and disease, Cell. (2006) 126, no. 5, 855–867, https://doi.org/10.1016/j.cell.2006.08.019, 2-s2.0-33748195979.
- 34 Chinen J. and Buckley R. H., Transplantation immunology: solid organ and bone marrow, Journal of Allergy and Clinical Immunology. (2010) 125, no. 2, S324–S335, https://doi.org/10.1016/j.jaci.2009.11.014, 2-s2.0-76749123838.
- 35 Long E. T., Baker S., Oliveira V., Sawitzkib B., and Wood K. J., Alpha-1,2-mannosidase and hence N-glycosylation are required for regulatory T cell migration and allograft tolerance in mice, PLoS ONE. (2010) 5, no. 1, e8894, https://doi.org/10.1371/journal.pone.0008894, 2-s2.0-77749239736.
- 36 Bocian K., Borysowski J., Wierzbicki P., Wyzgał J., Kłosowska D., Białoszewska A., Pczek L., Górski A., and Korczak-Kowalska G., Rapamycin, unlike cyclosporine A, enhances suppressive functions of in vitro-induced CD4+CD25+ Tregs, Nephrology Dialysis Transplantation. (2010) 25, no. 3, 710–717, https://doi.org/10.1093/ndt/gfp586, 2-s2.0-77649217359.
- 37 Saunders R. N., Metcalfe M. S., and Nicholson M. L., Rapamycin in transplantation: a review of the evidence, Kidney International. (2001) 59, no. 1, 3–16, https://doi.org/10.1046/j.1523-1755.2001.00460.x, 2-s2.0-0035165578.
- 38 Lee C.-L., Jiang P.-P., Sit W.-H., and Wan J. M.-F., Proteome of human T lymphocytes with treatment of cyclosporine and polysaccharopeptide: analysis of significant proteins that manipulate T cells proliferation and immunosuppression, International Immunopharmacology. (2007) 7, no. 10, 1311–1324, https://doi.org/10.1016/j.intimp.2007.05.013, 2-s2.0-34547153230.
- 39 Kędzierska K., Sporniak-Tutak K., Sindrewicz K., Bober J., Domański L., Parafiniuk M., Urasińska E., Ciechanowicz A., Domański M., Smektała T., Masiuk M., Skrzypczak W., Ożgo M., Kabat-Koperska J., and Ciechanowski K., Effects of immunosuppressive treatment on protein expression in rat kidney, Drug Design, Development and Therapy. (2014) 8, 1695–1708, https://doi.org/10.2147/dddt.s64814, 2-s2.0-84908056843.
- 40 Martin D. F., DeBarge L. R., Nussenblatt R. B., Chan C.-C., and Roberge F. G., Synergistic effect of rapamycin and cyclosporin A in the treatment of experimental autoimmune uveoretinitis, Journal of Immunology. (1995) 154, no. 2, 922–927, 2-s2.0-0028858836.
- 41 Engl T., Makarević J., Relja B., Natsheh I., Müller I., Beecken W.-D., Jonas D., and Blaheta R. A., Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy, BMC Cancer. (2005) 5, article 4, https://doi.org/10.1186/1471-2407-5-4, 2-s2.0-13144285677.
- 42 Faralli J. A., Gagen D., Filla M. S., Crotti T. N., and Peters D. M., Dexamethasone increases αvβ3 integrin expression and affinity through a calcineurin/NFAT pathway, Biochimica et Biophysica Acta—Molecular Cell Research. (2013) 1833, no. 12, 3306–3313, https://doi.org/10.1016/j.bbamcr.2013.09.020, 2-s2.0-84886439194.
- 43 Huang Y.-H., Ma Y.-L., Ma L., Mao J.-L., Zhang Y., Du M.-R., and Li D.-J., Cyclosporine A improves adhesion and invasion of mouse preimplantation embryos via upregulating integrin β3 and matrix metalloproteinase-9, International Journal of Clinical and Experimental Pathology. (2014) 7, no. 4, 1379–1388, 2-s2.0-84899544438.
- 44 Zal F., Mostafavi-Pour Z., Moattari A., Sardarian A., and Vessal M., Altered expression of alpha2beta1 integrin in kidney fibroblasts: a potential mechanism for CsA-induced nephrotoxicity, Archives of Iranian Medicine. (2014) 17, no. 8, 556–562.
- 45 Isaji T., Im S., Gu W., Wang Y., Hang Q., Lu J., Fukuda T., Hashii N., Takakura D., Kawasaki N., Miyoshi H., and Gu J., An oncogenic protein Golgi phosphoprotein 3 up-regulates cell migration via sialylation, The Journal of Biological Chemistry. (2014) 289, no. 30, 20694–20705, https://doi.org/10.1074/jbc.m113.542688, 2-s2.0-84905369486.
- 46 Paul L. C., Valentin J.-F., Bruijn J. A., and Zhang S., Donor treatment with mycophenolate mofetil protects against ischemia-reperfusion injury, Transplantation Proceedings. (1999) 31, no. 1-2, https://doi.org/10.1016/S0041-1345(98)01886-7, 2-s2.0-0345130118.
- 47 Aw M. M., Transplant immunology, Journal of Pediatric Surgery. (2003) 38, no. 9, 1275–1280, https://doi.org/10.1016/s0022-3468(03)00381-6, 2-s2.0-0141566706.
- 48 Doucey M.-A., Legler D. F., Faroudi M., Boucheron N., Baumgaertner P., Naeher D., Cebecauer M., Hudrisier D., Rüegg C., Palmer E., Valitutti S., Bron C., and Luescher I. F., The beta1 and beta3 integrins promote T cell receptor-mediated cytotoxic T lymphocyte activation, The Journal of Biological Chemistry. (2003) 278, no. 29, 26983–26991, https://doi.org/10.1074/jbc.m302709200, 2-s2.0-0038035145.
- 49 Dustin M. L. and de Fougerolles A. R., Reprograming T cells: the role of extracellular matrix in coordination of T cell activation and migration, Current Opinion in Immunology. (2001) 13, no. 3, 286–290, https://doi.org/10.1016/s0952-7915(00)00217-x, 2-s2.0-0035354268.
- 50 Allison A. C. and Eugui E. M., Mycophenolate mofetil and its mechanisms of action, Immunopharmacology. (2000) 47, no. 2-3, 85–118, https://doi.org/10.1016/S0162-3109(00)00188-0, 2-s2.0-0034045586.
- 51 Frey T. and De Maio A., The antifungal agent itraconazole induces the accumulation of high mannose glycoproteins in macrophages, Journal of Biological Chemistry. (2009) 284, no. 25, 16882–16890, https://doi.org/10.1074/jbc.m109.007609, 2-s2.0-67650556449.
- 52 Lavie Y., Cao H.-T., Volner A., Lucci A., Han T.-Y., Geffen V., Giuliano A. E., and Cabot M. C., Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells, The Journal of Biological Chemistry. (1997) 272, no. 3, 1682–1687, https://doi.org/10.1074/jbc.272.3.1682, 2-s2.0-0031019309.
- 53 Renkonen R. and Ustinov J., Carbohydrate synthesis inhibitors decrease interleukin 1-stimulated lymphocyte binding to endothelial cells, European Journal of Immunology. (1991) 21, no. 3, 777–781, https://doi.org/10.1002/eji.1830210334, 2-s2.0-0025970139.
- 54 Tulp A., Barnhoorn M., Bause E., and Ploegh H., Inhibition of N-linked oligosaccharide trimming mannosidases blocks human B cell development, The EMBO Journal. (1986) 5, no. 8, 1783–1790, 2-s2.0-0022764676.
- 55 Sperandio M., Gleissner C. A., and Ley K., Glycosylation in immune cell trafficking, Immunological Reviews. (2009) 230, no. 1, 97–113, https://doi.org/10.1111/j.1600-065x.2009.00795.x, 2-s2.0-67649743525.