Hybrid Materials for Integrated Photonics
Corresponding Author
Paolo Bettotti
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, Povo, 38123 Trento, Italy unitn.it
Search for more papers by this authorCorresponding Author
Paolo Bettotti
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, Povo, 38123 Trento, Italy unitn.it
Search for more papers by this authorAbstract
In this review materials and technologies of the hybrid approach to integrated photonics (IP) are addressed. IP is nowadays a mature technology and is the most promising candidate to overcome the main limitations that electronics is facing due to the extreme level of integration it has achieved. IP will be based on silicon photonics in order to exploit the CMOS compatibility and the large infrastructures already available for the fabrication of devices. But silicon has severe limits especially concerning the development of active photonics: its low efficiency in photons emission and the limited capability to be used as modulator require finding suitable materials able to fulfill these fundamental tasks. Furthermore there is the need to define standardized processes to render these materials compatible with the CMOS process and to fully exploit their capabilities. This review describes the most promising materials and technological approaches that are either currently implemented or may be used in the coming future to develop next generations of hybrid IP devices.
References
- 1 Weir I., Archenhold G., Robinson M., Williams M., and Hilton P., Photonics Technologies and market for a low carbon economy, Summary report published by EC, (Paderborn), 2012.
- 2 C. Kachris, K. Bergman, and I. Tomkos, Optical Interconnects for Future Data Center Networks, 2013, Springer, New York, NY, USA.
- 3 Krishnamoorthy A. V., Progress in low-power switched optical interconnects, IEEE Journal of Selected Topics in Quantum Electronics. (2011) 17, no. 2, 357–376, https://doi.org/10.1109/JSTQE.2010.2081350.
- 4 Mesaritakis C., Papataxiarhis V., and Syvridis D., Microring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system, Journal of Optical Society of America B: Optical Physics. (2013) 30, no. 11, 3048–3055.
- 5 Brunner D., Cornelles Soriano M., and Fischer I., High-speed optical vector and matrix operations using a semiconductor laser, IEEE Photonics Technology Letters. (2013) 25, no. 17, 1680–1683, https://doi.org/10.1109/LPT.2013.2273373.
- 6 Brunner D., Soriano M. C., Mirasso C. R., and Fischer I., Parallel photonic information processing at gigabyte per second data rates using transient states, Nature Communications. (2013) 4, https://doi.org/10.1038/ncomms2368.
- 7 Soriano M. C., García-Ojalvo J., Mirasso C. R., and Fischer I., Complex photonics: dynamics and applications of delay-coupled semiconductors lasers, Reviews of Modern Physics. (2013) 85, no. 1, 421–470, 2-s2.0-84876004440, https://doi.org/10.1103/RevModPhys.85.421.
- 8 Andréasson J., Pischel U., Straight S. D., Moore T. A., Moore A. L., and Gust D., All-photonic multifunctional molecular logic device, Journal of the American Chemical Society. (2011) 133, no. 30, 11641–11648, 2-s2.0-79960866994, https://doi.org/10.1021/ja203456h.
- 9 Fresch B., Hiluf D., Collini E., Levine R. D., and Remacl F., Molecular decision trees realized by ultrafast electronic spectroscopy, Proceedings of the National Academy of Science. (2013) 110, no. 43, 17183–17188.
- 10 Wada O., Recent progress in semiconductor-based photonic signal-processing devices, IEEE Journal on Selected Topics in Quantum Electronics. (2011) 17, no. 2, 309–319, 2-s2.0-79954612120, https://doi.org/10.1109/JSTQE.2010.2062492.
- 11 Fiorani M., Casoni M., and Aleksic S., Hybrid optical switching for an energy-efficient internet core, IEEE Internet Computing. (2013) 17, no. 1, 14–22, 2-s2.0-84873831863, https://doi.org/10.1109/MIC.2012.120.
- 12 Cook G. and van Horn J., How dirt is your data?, Greenpeace International, 2011, http://www.greenpeace.org/international/Global/international/publications/climate/2011/Cool%20IT/dirty-data-report-greenpeace.pdf.
- 13
Lifante G., Integrated Photonics: Fundamentals, 2003, Wiley.
10.1002/0470861401 Google Scholar
- 14 Nagarajan R. and Smit M., Photonic integration, IEEE LEOS Newsletter. (2007) 4–10.
- 15 Heo Y. J. and Takeuchi S., Towards smart tattoos: implantable biosensors for continuous glucose monitoring, Advanced Healthcare Materials. (2013) 2, no. 1, 43–56.
- 16 Singh T. B., Sariciftci N. S., and Grote J. G., Bio-organic optoelectronic devices using DNA, Organic Electronics, 2010, 223, Springer, 73–112, Advances in Polymer Science.
- 17 Kim D.-H., Ghaffari R., Lu N., and Rogers J. A., Flexible and stretchable electronics for biointegrated devices, Annual Review of Biomedical Engineering. (2012) 14, 113–128, 2-s2.0-84864232759, https://doi.org/10.1146/annurev-bioeng-071811-150018.
- 18 Ko H., Kapadia R., Takei K., Takahashi T., Zhang X., and Javey A., Multifunctional, flexible electronic systems based on engineered nanostructured materials, Nanotechnology. (2012) 23, no. 34, 2-s2.0-84865235222, https://doi.org/10.1088/0957-4484/23/34/344001, 344001.
- 19 Singh M., Haverinen H. M., Dhagat P., and Jabbour G. E., Inkjet printing-process and its applications, Advanced Materials. (2010) 22, no. 6, 673–685, 2-s2.0-77049107803, https://doi.org/10.1002/adma.200901141.
- 20 Jung M., Kim J., Noh J., Lim N., Lim C., Lee G., Kim J., Kang H., Jung K., Leonard A. D., Tour J. M., and Cho G., All-Printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils, IEEE Transactions on Electron Devices. (2010) 57, no. 3, 571–580, 2-s2.0-77649192112, https://doi.org/10.1109/TED.2009.2039541.
- 21 Briand D., Oprea A., Courbat J., and Bârsan N., Making environmental sensors on plastic foil, Materials Today. (2011) 14, no. 9, 416–423, 2-s2.0-80052062885, https://doi.org/10.1016/S1369-7021(11)70186-9.
- 22 Moonen P. F., Yakimets I., and Huskens J., Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies, Advanced Materials. (2012) 24, no. 41, 5526–5541, 2-s2.0-84868089446, https://doi.org/10.1002/adma.201202949.
- 23 Heck M. J. R., Davenport M. L., and Bowers J. E., Progress in hybrid-silicon photonic integrated circuit technology, SPIE Newsroom. (2013) https://doi.org/10.1117/2.1201302.004730.
- 24 Liang D. and Bowers J. E., Recent progress in lasers on silicon, Nature Photonics. (2010) 4, no. 8, 511–517, 2-s2.0-77955224020, https://doi.org/10.1038/nphoton.2010.167.
- 25 Roelkens G., Koninck Y. D., Keyvaninia S., Stankovic S., Tassaert M., Lamponi M., Duan G., van Thourhout D., and Baets R., L. A. Eldada and E.-H. Lee, Hybrid silicon lasers, 7972, Optoelectronic Integrated Circuits XIII, January 2011, Proceedings of SPIE, 2-s2.0-79953703710, https://doi.org/10.1117/12.880089.
- 26 Fang A. W., Park H., Kuo Y.-H., Jones R., Cohen O., Liang D., Raday O., Sysak M. N., Paniccia M. J., and Bowers J. E., Hybrid silicon evanescent devices, Materials Today. (2007) 10, no. 7-8, 28–35, 2-s2.0-34250198958, https://doi.org/10.1016/S1369-7021(07)70177-3.
- 27 Roelkens G., Liu L., Liang D., Jones R., Fang A., Koch B., and Bowers J., III-V/silicon photonics for on-chip and intra-chip optical interconnects, Laser & Photonics Reviews. (2010) 4, no. 6, 751–779, 2-s2.0-77956356860, https://doi.org/10.1002/lpor.200900033.
- 28 van Campenhout J., Liu L., Romeo P. R., van Thourhout D., Seassal C., Regreny P., Di Cioccio L., Fedeli J.-M., and Baets R., A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks, IEEE Photonics Technology Letters. (2008) 20, no. 16, 1345–1347, 2-s2.0-49349098699, https://doi.org/10.1109/LPT.2008.926857.
- 29 Lamponi M., Keyvaninia S., Jany C., Poingt F., Lelarge F., de Valicourta G., Roelkens G., van Thourhout D., Messaoudene S., Fedeli J.-M., and Duan G. H., Heterogeneously integrated InP/SOI laser using double tapered single-mode waveguides through adhesive die to wafer bonding, Proceedings of the 7th IEEE International Conference on Group IV Photonics (GFP ′10), September 2010, Beijing, China, 22–24, 2-s2.0-78651373844, https://doi.org/10.1109/GROUP4.2010.5643441.
- 30 Keyvaninia S., Roelkens G., van Thourhout D., Jany C., Lamponi M., Le Liepvre A., Lelarge F., Make D., Duan G.-H., Bordel D., and Fedeli J.-M., Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser, Optics Express. (2013) 21, no. 3, 3784–3792, 2-s2.0-84874069754, https://doi.org/10.1364/OE.21.003784.
- 31 Keyvaninia S., Roelkens G., Baets R., Lelarge F., Duan G. H., Messaoudene S., Fedeli J. M., and van Thourhout D., Demonstration of a novel III-V-on-Si distributed feedback laser, Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC ′13), 2013.
- 32 Huang Z. and Wang Y., Four-wavelength III-V/SOI heterogeneous integrated laser based on sampled bragg grating for CWDM, IEEE Photonics Journal. (2013) 5, no. 5, 1501906.
- 33 Klimov V. I., Mikhailovsky A. A., Xu S., Malko A., Hollingsworth J. A., Leatherdale C. A., Eisler H.-J., and Bawendi M. G., Optical gain and stimulated emission in nanocrystal quantum dots, Science. (2000) 290, no. 5490, 314–317, 2-s2.0-0034644601, https://doi.org/10.1126/science.290.5490.314.
- 34 Bakshi M. S., Thakur P., Kaur G., Kaur H., Banipal T. S., Possmayer F., and Petersen N. O., Stabilization of PbS nanocrystals by bovine serum albumin in its native and denatured states, Advanced Functional Materials. (2009) 19, no. 9, 1451–1458, 2-s2.0-66149096211, https://doi.org/10.1002/adfm.200801212.
- 35 Omari A., Moreels I., Masia F., Langbein W., Borri P., van Thourhout D., Kockaert P., and Hens Z., Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm, Physical Review B: Condensed Matter and Materials Physics. (2012) 85, no. 11, 2-s2.0-84859010188, https://doi.org/10.1103/PhysRevB.85.115318, 115318.
- 36 Olsson Y. K., Chen G., Rapaport R., Fuchs D. T., Sundar V. C., Steckel J. S., Bawendi M. G., Aharoni A., and Banin U., Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots, Applied Physics Letters. (2004) 85, no. 19, 4469–4471, 2-s2.0-10844240614, https://doi.org/10.1063/1.1818723.
- 37 Grandidier J., des Francs G. C., Massenot S., Bouhelier A., Markey L., Weeber J.-C., Finot C., and Dereux A., Gain-assisted propagation in a plasmonic waveguide at telecom wavelength, Nano Letters. (2009) 9, no. 8, 2935–2939, 2-s2.0-68949174999, https://doi.org/10.1021/nl901314u.
- 38 Tessler N., Medvedev V., Kazes M., Kan S., and Banin U., Efficient near-infrared polymer nanocrystal light-emitting diodes, Science. (2002) 295, no. 5559, 1506–1508, 2-s2.0-0037154802, https://doi.org/10.1126/science.1068153.
- 39 Bakueva L., Musikhin S., Hines M. A., Chang T.-W. F., Tzolov M., Scholes G. D., and Sargent E. H., Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer, Applied Physics Letters. (2003) 82, no. 17, 2895–2897, 2-s2.0-0038636023, https://doi.org/10.1063/1.1570940.
- 40 Humer M., Guider R., Jantsch W., and Fromherz T., Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths, Optics Express. (2013) 21, no. 16, 18680–[18688.
- 41 Shoji Y., Ogasawara T., Kamei T., Sakakibara Y., Suda S., Kintaka K., Kawashima H., Okano M., Hasama T., Ishikawa H., and Mori M., Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide, Optics Express. (2010) 18, no. 6, 5668–5673, 2-s2.0-77949607717, https://doi.org/10.1364/OE.18.005668.
- 42 Vlasov Y. A. and McNab S. J., Losses in single-mode silicon-on-insulator strip waveguides and bends, Optics Express. (2004) 12, no. 8, 1622–1631, 2-s2.0-2942708124, https://doi.org/10.1364/OPEX.12.001622.
- 43 Humer M., Guider R., Jantsch W., and Fromherz T., J. M. Fedeli, L. Vivien, and M. K. Smit, Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths, 8767, International Society for Optical Engineering, 2013, Proceedings of SPIE.
- 44 Omari A., Geiregat P., van Thourhout D., and Hens Z., Light absorption in hybrid silicon-on insulator/quantum dot waveguides, Optics Express. (2013) 21, no. 20, 23272–23285, https://doi.org/10.1364/OE.21.023272.
- 45 Abel K. A., Shan J., Boyer J.-C., Harris F., and van Veggel F. C. J. M., Highly photoluminescent PbS nanocrystals: The beneficial effects of trioctylphosphine, Chemistry of Materials. (2008) 20, no. 12, 3794–3796, 2-s2.0-47649128464, https://doi.org/10.1021/cm702564a.
- 46 Geyer S. M., Scherer J. M., Bawendi M. G., and Jaworski F., Dual Band ultraviolet-short-wavelength imaging via luminescent down-shifting with colloidal quantum dots, Journal of Nanophotonic. (2013) 7, no. 1, 073083.
- 47 Neo M. S., Venkatram N., Li G. S., Chin W. S., and Ji W., Synthesis of PbS/CdS core-shell QDs and their nonlinear optical properties, Journal of Physical Chemistry C. (2010) 114, no. 42, 18037–18044, 2-s2.0-77958578558, https://doi.org/10.1021/jp104311j.
- 48 Landrigan P. J., Occupational and community exposures to toxic metals: Lead, cadmium, mercury and arsenic, The Western Journal of Medicine. (1982) 137, no. 6, 531–539, 2-s2.0-0020407517.
- 49 Selvan S. T., Tan T. T., and Ying J. Y., Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence, Advanced Materials. (2005) 17, no. 13, 1620–1625, 2-s2.0-22044441358, https://doi.org/10.1002/adma.200401960.
- 50 Han R., Yu M., Zheng Q., Wang L., Hong Y., and Sha Y., A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging, Langmuir. (2009) 25, no. 20, 12250–12255, 2-s2.0-74949131282, https://doi.org/10.1021/la9016596.
- 51 Koole R., van Schooneveld M. M., Hilhorst J., De Donegal C. M., ′T Hart D. C., van Blaaderen A., vanmaekelbergh D., and Meijerink A., On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method, Chemistry of Materials. (2008) 20, no. 7, 2503–2512, 2-s2.0-42449127566, https://doi.org/10.1021/cm703348y.
- 52 Kosten E. D., Warren E. L., and Atwater H. A., Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit, Optics Express. (2011) 19, no. 4, 3316–3331, 2-s2.0-79951642741, https://doi.org/10.1364/OE.19.003316.
- 53 Diedenhofen S. L., Janssen O. T. A., Grzela G., Bakkers E. P. A. M., and Gómez Rivas J., Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires, ACS Nano. (2011) 5, no. 3, 2316–2323, 2-s2.0-79952903118, https://doi.org/10.1021/nn103596n.
- 54 Heiss M. and Fontcuberta i Morral A., Fundamental limits in the external quantum efficiency of single nanowire solar cells, Applied Physics Letters. (2011) 99, no. 26, 2-s2.0-84855698975, https://doi.org/10.1063/1.3672168, 263102.
- 55 Milam D., Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica, Applied Optics. (1998) 37, no. 3, 546–550, 2-s2.0-0000073832.
- 56 Dinu M., Quochi F., and Garcia H., Third-order nonlinearities in silicon at telecom wavelengths, Applied Physics Letters. (2003) 82, no. 18, 2954–2956, 2-s2.0-0038528533, https://doi.org/10.1063/1.1571665.
- 57 Villeneuve A., Yang C. C., Stegeman G. I., Lin C.-H., and Lin H.-H., Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs, Applied Physics Letters. (1993) 62, no. 20, 2465–2467, 2-s2.0-0000290317, https://doi.org/10.1063/1.109320.
- 58 Gopinath J. T., Soljačić M., Ippen E. P., Fuflyigin V. N., King W. A., and Shurgalin M., Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications, Journal of Applied Physics. (2004) 96, no. 11, 6931–6933, 2-s2.0-22544475168, https://doi.org/10.1063/1.1805182.
- 59 Vallaitis T., Bogatscher S., Alloatti L., Dumon P., Baets R., Scimeca M. L., Biaggio I., Diederich F., Koos C., Freude W., and Leuthold J., Optical properties of highly nonlinear silicon-organic hybrid (SQH) waveguide geometries, Optics Express. (2009) 17, no. 20, 17357–17368, 2-s2.0-70349657121, https://doi.org/10.1364/OE.17.017357.
- 60 Krogstrup P., Jørgensen H. I., Heiss M., Demichel O., Holm J. V., Aagesen M., Nygard J., and Fontcuberta I Morral A., Single-nanowire solar cells beyond the Shockley-Queisser limit, Nature Photonics. (2013) 7, no. 4, 306–310, 2-s2.0-84875806986, https://doi.org/10.1038/nphoton.2013.32.
- 61 Hochberg M. and Baehr-Jones T., Towards fabless silicon photonics, Nature Photonics. (2010) 4, no. 8, 492–494, 2-s2.0-77955219449, https://doi.org/10.1038/nphoton.2010.172.
- 62 Zhang Z., Silicon-based photonic devices: design, fabrication and characterization [Ph.D. thesis], 2008, Royal Institute of Technology (KTH).
- 63 Wagner C. and Harned N., EUV lithography: lithography gets extreme, Nature Photonics. (2010) 4, no. 1, 24–26, 2-s2.0-73549094237, https://doi.org/10.1038/nphoton.2009.251.
- 64 Liang X., Jung Y.-S., Wu S., Ismach A., Olynick D. L., Cabrini S., and Bokor J., Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography, Nano Letters. (2010) 10, no. 7, 2454–2460, 2-s2.0-77955340828, https://doi.org/10.1021/nl100750v.
- 65 Manfrinato V. R., Zhang L., Su D., Duan H., Hobbs R. G., Stach E. A., and Berggren K. K., Resolution limits of electron-beam lithography toward the atomic scale, Nano Letters. (2013) 13, no. 4, 1555–1558, 2-s2.0-84876067733, https://doi.org/10.1021/nl304715p.
- 66 Leuthold J., Freude W., Brosi J.-M., Baets R., Dumon P., Biaggio I., Scimeca M. L., Diederich F., Frank B., and Koos C., Silicon organic hybrid technology—a platform for practical nonlinear optics, Proceedings of the IEEE. (2009) 97, no. 7, 1304–1315, 2-s2.0-67449168685, https://doi.org/10.1109/JPROC.2009.2016849.
- 67 Lipson M., Guiding, modulating, and emitting light on silicon—challenges and opportunities, Journal of Lightwave Technology. (2005) 23, no. 12, 4222–4238, 2-s2.0-31344438724, https://doi.org/10.1109/JLT.2005.858225.
- 68 Heck M. J. R., Bauters J. F., Davenport M. L., Doylend J. K., Jain S., Kurczveil G., Srinivasan S., Tang Y., and Bowers J. E., Hybrid silicon photonic integrated circuit technology, IEEE Journal on Selected Topics in Quantum Electronics. (2013) 19, no. 4, 6100117, 2-s2.0-84877865576, https://doi.org/10.1109/JSTQE.2012.2235413.
- 69 Jeong S., Garnett E. C., Wang S., Yu Z., Fan S., Brongersma M. L., McGehee M. D., and Cui Y., Hybrid silicon nanocone-polymer solar cells, Nano Letters. (2012) 12, no. 6, 2971–2976, 2-s2.0-84862295484, https://doi.org/10.1021/nl300713x.
- 70 Kopp C., Bernabé S., Bakir B. B., Fedeli J.-M., Orobtchouk R., Schrank F., Porte H., Zimmermann L., and Tekin T., Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging, IEEE Journal on Selected Topics in Quantum Electronics. (2011) 17, no. 3, 498–509, 2-s2.0-79958283747, https://doi.org/10.1109/JSTQE.2010.2071855.
- 71 Liang D., Roelkens G., Baets R., and Bowers J. E., Hybrid integrated platforms for silicon photonics, Materials. (2010) 3, no. 3, 1782–1802.
- 72 Hong T., Ran G.-Z., Chen T., Pan J.-Q., Chen W.-X., Wang Y., Cheng Y.-B., Liang S., Zhao L.-J., Yin L.-Q., Zhang J.-H., Wang W., and Qin G.-G., A selective-area metal bonding InGaAsP-Si laser, IEEE Photonics Technology Letters. (2010) 22, no. 15, 1141–1143, 2-s2.0-77954606468, https://doi.org/10.1109/LPT.2010.2050683.
- 73 Justice J., Bower C., Meitl M., Mooney M. B., Gubbins M. A., and Corbett B., Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers, Nature Photonics. (2012) 6, no. 9, 610–614, 2-s2.0-84866389765, https://doi.org/10.1038/nphoton.2012.204.
- 74 Justo Y., Moreels I., Lambert K., and Hens Z., Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: Morphology and photoluminescence, Nanotechnology. (2010) 21, no. 29, 2-s2.0-77954422330, https://doi.org/10.1088/0957-4484/21/29/295606, 295606.
- 75 Ingrosso C., Fakhfouri V., Striccoli M., Agostiano A., Voigt A., Gruetmer G., Curri M. L., and Brugger J., An epoxy photoresist modified by luminescent nanocrystals for the fabrication of 3D high-aspect-ratio microstructures, Advanced Functional Materials. (2007) 17, no. 13, 2009–2017, 2-s2.0-34548558981, https://doi.org/10.1002/adfm.200700098.
- 76 Wang M., Lithography, 2010, InTech.
- 77 Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., and Firsov A. A., Electric field in atomically thin carbon films, Science. (2004) 306, no. 5696, 666–669, 2-s2.0-7444220645, https://doi.org/10.1126/science.1102896.
- 78 Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M. R., and Geim A. K., Fine structure constant defines visual transparency of graphene, Science. (2008) 320, no. 5881, 2-s2.0-45349092986, https://doi.org/10.1126/science.1156965.
- 79 Kim K., Choi J.-Y., Kim T., Cho S.-H., and Chung H.-J., A role for graphene in silicon-based semiconductor devices, Nature. (2011) 479, no. 7373, 338–344, 2-s2.0-81555207231, https://doi.org/10.1038/nature10680.
- 80 Sarma S. D., Adam S., Hwang E. H., and Rossi E., Electronic transport in two-dimensional graphene, Reviews of Modern Physics. (2011) 83, no. 2, 407–470, 2-s2.0-79961214652, https://doi.org/10.1103/RevModPhys.83.407.
- 81 Palacios T., Graphene electronics: thinking outside the silicon box, Nature Nanotechnology. (2011) 6, no. 8, 464–465, 2-s2.0-79961175162, https://doi.org/10.1038/nnano.2011.125.
- 82 Hendry E., Hale P. J., Moger J., Savchenko A. K., and Mikhailov S. A., Coherent nonlinear optical response of graphene, Physical Review Letters. (2010) 105, no. 9, 2-s2.0-77956278270, https://doi.org/10.1103/PhysRevLett.105.097401, 097401.
- 83 Won R., Photovoltaics: graphene-silicon solar cells, Nature Photonics. (2010) 4, no. 7, 2-s2.0-77954401622, https://doi.org/10.1038/nphoton.2010.140.
- 84 Oakes L., Westover A., Mares J. W., Chatterjee S., Erwin W. R., Bardhan R., Weiss S. M., and Pint C. L., Surface engineered porous silicon for stable, high performance electrochemical supercapacitors, Scientific Reports. (2013) 3.
- 85 Liu M. and Zhang X., Silicon photonics: graphene benefits, Nature Photonics. (2013) 7, 851–852, https://doi.org/10.1038/nphoton.2013.257.
- 86 Gan X., Shiue R. J., Gao Y., Meric I., Heinz T. F., Shepard K., Hone J., Assefa S., and Englund D., Chip-integrated ultrafast graphene photodetector with high responsivity, Nature Photonics. (2013) 7, no. 11, 883–887.
- 87 Pospischil A., Humer M., Furchi M. M., Bachmann D., Guider R., Fromherz T., and Mueller T., CMOS-compatible graphene photodetector covering all optical communication bands, Nature Photonics. (2013) 7, no. 11, 892–896.
- 88 Wang X., Cheng Z., Xu K., Tsang H. K., and Xu J. B., High-responsivity graphene/silicon-heterostructure waveguide photodetectors, Nature Photonics. (2013) 7, no. 11, 888–891.
- 89 Xia F., Mueller T., Lin Y.-M., Valdes-Garcia A., and Avouris P., Ultrafast graphene photodetector, Nature Nanotechnology. (2009) 4, no. 12, 839–843, 2-s2.0-72549085241, https://doi.org/10.1038/nnano.2009.292.
- 90 Hong S. Y., Dadap J. I., Petrone N., Yeh P. C., Hone J., and OsgoodR. M.Jr., Optical third-harmonic generation in graphene, Physical Review. (2013) 3, 021014.
- 91 Gu T., Petrone N., McMillan J. F., van Der Zande A., Yu M., Lo G. Q., Kwong D. L., Hone J., and Wong C. W., Regenerative oscillation and four-wave mixing in graphene optoelectronics, Nature Photonics. (2012) 6, no. 8, 554–559, 2-s2.0-84864549043, https://doi.org/10.1038/nphoton.2012.147.
- 92 Pasquazi A., Peccianti M., Park Y., Little B. E., Chu S. T., Morandotti R., Azaña J., and Moss D. J., Sub-picosecond phase-sensitive optical pulse characterization on a chip, Nature Photonics. (2011) 5, no. 10, 618–623, 2-s2.0-80053562456, https://doi.org/10.1038/nphoton.2011.199.
- 93 Wang F., Zhang Y., Tian C., Girit C., Zettl A., Crommie M., and Shen Y. R., Gate-variable optical transitions in graphene, Science. (2008) 320, no. 5873, 206–209, 2-s2.0-42049094251, https://doi.org/10.1126/science.1152793.
- 94 Majumdar A., Kim J., Vuckovic J., and Wang F., Electrical control of silicon photonic crystal cavity by graphene, Nano Letters. (2013) 13, no. 2, 515–518, 2-s2.0-84873622083, https://doi.org/10.1021/nl3039212.
- 95 Jia Y., Wei J., Wang K., Cao A., Shu Q., Gui X., Zhu Y., Zhuang D., Zhang G., Ma B., Wang L., Liu W., Wang Z., Luo J., and Wu D., Nanotube-silicon heterojunction solar cells, Advanced Materials. (2008) 20, no. 23, 4594–4598, 2-s2.0-57349094709, https://doi.org/10.1002/adma.200801810.
- 96 Arena A., Donato N., Saitta G., Galvagno S., Milone C., and Pistone A., Photovoltaic properties of multi-walled carbon nanotubes deposited on n-doped silicon, Microelectronics Journal. (2008) 39, no. 12, 1659–1662, 2-s2.0-56049123210, https://doi.org/10.1016/j.mejo.2008.02.012.
- 97 Jung Y., Li X., Rajan N. K., Taylor A. D., and Reed M. A., Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells, Nano Letters. (2013) 13, no. 1, 95–99, 2-s2.0-84872106092, https://doi.org/10.1021/nl3035652.
- 98 Li X., Zhu H., Wang K., Cao A., Wei J., Li C., Jia Y., Li Z., Li X., and Wu D., Graphene-on-silicon schottky junction solar cells, Advanced Materials. (2010) 22, no. 25, 2743–2748, 2-s2.0-77955213063, https://doi.org/10.1002/adma.200904383.
- 99 Green M. A., Emery K., Hishikawa Y., Warta W., and Dunlop E. D., Solar cell efficiency tables (version 39), Progress in Photovoltaics: Research and Applications. (2012) 20, no. 1, 12–20, 2-s2.0-84855321124, https://doi.org/10.1002/pip.2163.
- 100 Jane A., Dronov R., Hodges A., and Voelcker N. H., Porous silicon biosensors on the advance, Trends in Biotechnology. (2009) 27, no. 4, 230–239, 2-s2.0-62549135662, https://doi.org/10.1016/j.tibtech.2008.12.004.
- 101 Kumar N., Gennaro S., Sasikumar P. V. W., Soraru G. D., and Bettotti P., Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon, Applied Physics A. (2013) https://doi.org/10.1007/s00339-013-8104-6.
- 102 Eldada L. and Shacklette L. W., Advances in polymer integrated optics, IEEE Journal on Selected Topics in Quantum Electronics. (2000) 6, no. 1, 54–68, 2-s2.0-0033889511, https://doi.org/10.1109/2944.826873.
- 103 Ma H., Jen A. K. Y., and Dalton L. R., Polymer-based optical waveguides: materials, processing, and devices, Advanced Materials. (2002) 14, no. 9, 1339–1365.
- 104 Zhang Z., Mettbach N., Zawadzki C., Wang J., Schmidt D., Brinker W., Grote N., Schell M., and Keil N., Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control, IET Optoelectronics. (2011) 5, no. 5, 226–232, 2-s2.0-80053281900, https://doi.org/10.1049/iet-opt.2010.0054.
- 105 Oh M.-C., Kim K.-J., Chu W.-S., Kim J.-W., Seo J.-K., Noh Y.-O., and Lee H.-J., Integrated photonic devices incorporating low-loss fluorinated polymer materials, Polymers. (2011) 3, no. 3, 975–997, 2-s2.0-83655203262, https://doi.org/10.3390/polym3030975.
- 106 Liu J.-G. and Ueda M., High refractive index polymers: fundamental research and practical applications, Journal of Materials Chemistry. (2009) 19, no. 47, 8907–8919, 2-s2.0-72849119986, https://doi.org/10.1039/b909690f.
- 107 Zebda A., Camberlein L., Bêche B., Gaviot E., Bêche E., Duval D., Zyss J., Jézéquel G., Solal F., and Godet C., Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers, Thin Solid Films. (2008) 516, no. 23, 8668–8674, 2-s2.0-51249088379, https://doi.org/10.1016/j.tsf.2008.04.095.
- 108 Nordström M., Zauner D. A., Boisen A., and Hübner J., Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications, Journal of Lightwave Technology. (2007) 25, no. 5, 1284–1289, 2-s2.0-34248589645, https://doi.org/10.1109/JLT.2007.893902.
- 109 Ahn S.-W., Lee K.-D., Kim D.-H., and Lee S.-S., Polymeric wavelength filter based on a Bragg grating using nanoimprint technique, IEEE Photonics Technology Letters. (2005) 17, no. 10, 2122–2124, 2-s2.0-26844547526, https://doi.org/10.1109/LPT.2005.854404.
- 110 Kirchner R., Kaiser M.-K., Adolphi B., Landgraf R., and Fischer W.-J., Chemical functional polymers for direct UV assisted nanoimprinting of polymeric photonic microring resonators, Physica Status Solidi A. (2011) 208, no. 6, 1308–1314, 2-s2.0-79959254318, https://doi.org/10.1002/pssa.201000949.
- 111 Li L., Gershgoren E., Kumi G., Chen W.-Y., Ho P.-T., Herman W. N., and Fourkas J. T., High-performance microring resonators fabricated with multiphoton absorption polymerization, Advanced Materials. (2008) 20, no. 19, 3668–3671, 2-s2.0-54949105802, https://doi.org/10.1002/adma.200800032.
- 112 Luo J. and Jen A. K. Y., Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices, IEEE Journal of Selected Topics in Quantum Electronics. (2013) 19, no. 6, 3401012.
- 113 Yin L. and Agrawal G. P., Impact of two-photon absorption on self-phase modulation in silicon waveguides, Optics Letters. (2007) 32, no. 14, 2031–2033, 2-s2.0-35348956560, https://doi.org/10.1364/OL.32.002031.
- 114 Bristow A. D., Rotenberg N., and van Driel H. M., Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm, Applied Physics Letters. (2007) 90, no. 19, 2-s2.0-34248330426, https://doi.org/10.1063/1.2737359, 191104.
- 115 Oh M.-C., Zhang H., Szep A., Chuyanov V., Steier W. H., Zhang C., Dalton L. R., Erlig H., Tsap B., and Fetterman H. R., Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate, Applied Physics Letters. (2000) 76, no. 24, 3525–3527, 2-s2.0-0000718843.
- 116 Yu G., Mallari J., Shen H., Miller E., Wei C., Shofman V., Jin D., Chen B., Chen H., and Dinu R., 40GHz zero chirp single-ended EO polymer modulators with low half-wave voltage, Proceedings of the Conference on Lasers and Electro-Optics (CLEO ′11), May 2011, Baltimore, Md, USA, 2-s2.0-80052104463.
- 117 Zhang X., Hosseini A., Lin X., Subbaraman H., and Chen R. T., Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects, IEEE Journal of Selected Topics in Quantum Electronics. (2013) 19, no. 6, 3401115.
- 118 Dinu R., Jin D., Yu G., Chen B., Huang D., Chen H., Barklund A., Miller E., Wei C., and Vemagiri J., Environmental stress testing of electro-optic polymer modulators, Journal of Lightwave Technology. (2009) 27, no. 11, 1527–1532, 2-s2.0-66949158369, https://doi.org/10.1109/JLT.2009.2014178.
- 119 Jin D., Chen H., Barklund A., Mallari J., Yu G., Miller E., and Dinu R., R. L. Nelson, F. Kajzar, and T. Kaino, EO polymer modulators reliability study, 7599, Organic Photonic Materials and Devices XII, January 2010, Proceedings of SPIE, 2-s2.0-77951575612, https://doi.org/10.1117/12.837418.
- 120 Luo J., Huang S., Shi Z., Polishak B. M., Zhou X.-H., and Jen A. K.-Y., Tailored organic electro-optic materials and their hybrid systems for device applications, Chemistry of Materials. (2011) 23, no. 3, 544–553, 2-s2.0-79952226816, https://doi.org/10.1021/cm1022344.
- 121 Lin C.-Y., Wang X., Chakravarty S., Lee B. S., Lai W., Luo J., Jen A. K.-Y., and Chen R. T., Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement, Applied Physics Letters. (2010) 97, no. 9, 2-s2.0-77956360986, https://doi.org/10.1063/1.3486225, 093304.
- 122 Koos C., Vorreau P., Vallaitis T., Dumon P., Bogaerts W., Baets R., Esembeson B., Biaggio I., Michinobu T., Diederich F., Freude W., and Leuthold J., All-optical high-speed signal processing with silicon-organic hybrid slot waveguides, Nature Photonics. (2009) 3, no. 4, 216–219, 2-s2.0-63949084684, https://doi.org/10.1038/nphoton.2009.25.
- 123 Inoue S. and Otomo A., Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides, Applied Physics Letters. (2013) 103, no. 17, 171101.
- 124 Leuthold J., Koos C., Freude W., Alloatti L., Palmer R., Korn D., Pfeifle J., Lauermann M., Dinu R., Wehrli S., Jazbinsek M., Gunter P., Waldow M., Wahlbrink T., Bolten J., Kurz H., Fournier M., Fedeli J. M., Yu H., and Bogaerts W., Silicon-organic hybrid electro-optical devices, IEEE Journal of Selected Topics in Quantum Electronics. (2013) 19, no. 6, 3401413.
- 125 Almeida V. R., Xu Q., Barrios C. A., and Lipson M., Guiding and confining light in void nanostructure, Optics Letters. (2004) 29, no. 11, 1209–1211, 2-s2.0-2942622311, https://doi.org/10.1364/OL.29.001209.
- 126 Robinson J. T., Preston K., Painter O., and Lipson M., First-principle derivation of gain in high-index-contrast waveguides, Optics Express. (2008) 16, no. 21, 16659–16669, 2-s2.0-54249124480, https://doi.org/10.1364/OE.16.016659.
- 127 Bettotti P., Pitanti A., Rigo E., de Leonardis F., Passaro V. M. N., and Pavesi L., Modeling of slot waveguide sensors based on polymeric materials, Sensors. (2011) 11, no. 8, 7327–7340, 2-s2.0-80052146938, https://doi.org/10.3390/s110807327.
- 128 Alloatti L., Korn D., Palmer R., Hillerkuss D., Li J., Barklund A., Dinu R., Wieland J., Fournier M., Fedeli J., Yu H., Bogaerts W., Dumon P., Baets R., Koos C., Freude W., and Leuthold J., 7 Gbit/s electro-optic modulator in silicon technology, Optics Express. (2011) 19, no. 12, 11841–11851, 2-s2.0-79958212813, https://doi.org/10.1364/OE.19.011841.
- 129 Brosi J.-M., Koos C., Andreani L. C., Waldow M., Leuthold J., and Freude W., High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide, Optics Express. (2008) 16, no. 6, 4177–4191, 2-s2.0-41149112075, https://doi.org/10.1364/OE.16.004177.
- 130 Young I. A., Mohammed E., Liao J. T. S., Kern A. M., Palermo S., Block B. A., Reshotko M. R., and Chang P. L. D., Optical I/O technology for tera-scale computing, IEEE Journal of Solid-State Circuits. (2010) 45, no. 1, 235–248, 2-s2.0-73249124996, https://doi.org/10.1109/JSSC.2009.2034444.
- 131 Palmer R., Alloatti L., Korn D., Heni W., Schindler P. C., Bolten J., Karl M., Waldow M., Wahlbrink T., Freude W., Koos C., and Leuthold J., Low-loss silicon strip-to-slot mode converters, IEEE Photonics Journal. (2013) 5, no. 1, 1226–1229, 2-s2.0-84873639665, https://doi.org/10.1109/JPHOT.2013.2239283.
- 132 Noh Y.-O., Lee C.-H., Kim J.-M., Hwang W.-Y., Won Y.-H., Lee H.-J., Han S.-G., and Oh M.-C., Polymer waveguide variable optical attenuator and its reliability, Optics Communications. (2004) 242, no. 4–6, 533–540, 2-s2.0-10444242539, https://doi.org/10.1016/j.optcom.2004.09.030.
- 133 Park S.-H., Kim J.-W., Oh M.-C., Noh Y.-O., and Lee H.-J., Polymer waveguide birefringence modulators, IEEE Photonics Technology Letters. (2012) 24, no. 10, 845–847, 2-s2.0-84860178972, https://doi.org/10.1109/LPT.2012.2189000.
- 134 Raghunathan V., Yagüe J. L., Xu J., Michel J., Gleason K. K., and Kimerling L. C., Co-polymer clad design for high performance athermal photonic circuits, Optics Express. (2012) 20, no. 19, 20808–20813, 2-s2.0-84866259293, https://doi.org/10.1364/OE.20.020808.
- 135 Kokubun Y., Yoneda S., and Tanaka H., Temperature-independent narrowband optical filter at 1.31 μm wavelength by an athermal waveguide, Electronics Letters. (1996) 32, no. 21, 1998–2000.
- 136 Lee J.-M., Kim D.-J., Ahn H., Park S.-H., and Kim G., Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer, Journal of Lightwave Technology. (2007) 25, no. 8, 2236–2243, 2-s2.0-34548173954, https://doi.org/10.1109/JLT.2007.899792.
- 137 Lee J.-M., Kim D.-J., Kim G.-H., Kwon O.-K., Kim K.-J., and Kim G., Controlling temperature dependence of silicon waveguide using slot structure, Optics Express. (2008) 16, no. 3, 1645–1652, 2-s2.0-39049115578, https://doi.org/10.1364/OE.16.001645.
- 138 Teng J., Dumon P., Bogaerts W., Zhang H., Jian X., Han X., Zhao M., Morthier G., and Baets R., Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides, Optics Express. (2009) 17, no. 17, 14627–14633, 2-s2.0-69049102082, https://doi.org/10.1364/OE.17.014627.
- 139 Pfeifle J., Alloatti L., Freude W., Leuthold J., and Koos C., Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding, Optics Express. (2012) 20, no. 14, 15359–15376, 2-s2.0-84863748155, https://doi.org/10.1364/OE.20.015359.
- 140 Yokoyama S., Qiu F., Feng Y., Spring A. M., and Yamamoto K., 0. 018pm/°C athermal silicon nitride ring resonator by polymer cladding, Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR ′13), 2013, Kyoto, Japan.
- 141 Raghunathan V., Izuhara T., Michel J., and Kimerling L., Stability of polymer-dielectric bi-layers for athermal silicon photonics, Optics Express. (2012) 20, no. 14, 16059–16066, 2-s2.0-84863760253, https://doi.org/10.1364/OE.20.016059.
- 142 Hsu K. S., Chiu T. T., Lee P. T., and Shih M. H., Wavelength tuning by bending a flexible photonic crystal laser, Journal of Lightwave Technology. (2013) 31, no. 12, 1960–1964, https://doi.org/10.1109/JLT.2013.2262922.
- 143 Noh Y.-O., Lee H.-J., Ju N. J., Kim M.-S., Oh S. H., and Oh M.-C., Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings, Optics Express. (2008) 16, no. 22, 18194–18195, 2-s2.0-55349141800, https://doi.org/10.1364/OE.16.018194.
- 144 Kim K.-J., Kim J.-W., Oh M.-C., Noh Y.-O., and Lee H.-J., Flexible polymer waveguide tunable lasers, Optics Express. (2010) 18, no. 8, 8392–8399, 2-s2.0-77950897436, https://doi.org/10.1364/OE.18.008392.
- 145 Ebisawa F., Kurokawa T., and Nara S., Electrical properties of polyacetylene/polysiloxane interface, Journal of Applied Physics. (1983) 54, no. 6, 3255–3259, 2-s2.0-0020766077, https://doi.org/10.1063/1.332488.
- 146 Kudo K., Yamashina M., and Moriizumi T., Field effect measurement of organic dye films, Japanese Journal of Applied Physics. (1984) 23, no. 1, 130–130.
- 147 Tsumura A., Koezuka H., and Ando T., Macromolecular electronic device: field-effect transistor with a polythiophene thin film, Applied Physics Letters. (1986) 49, no. 18, 1210–1212, 2-s2.0-36549104948, https://doi.org/10.1063/1.97417.
- 148 Chou W.-Y., Lin S.-T., Cheng H.-L., Chang M.-H., Guo H.-R., Wen T.-C., Mai Y.-S., Horng J.-B., Kuo C.-W., Tang F.-C., Liao C.-C., and Chiu C.-L., Polymer light-emitting diodes with thermal inkjet printed poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as transparent anode, Thin Solid Films. (2007) 515, no. 7-8, 3718–3723, 2-s2.0-33846935270, https://doi.org/10.1016/j.tsf.2006.09.025.
- 149 Lee D.-H., Choi J. S., Chae H., Chung C.-H., and Cho S. M., Screen-printed white OLED based on polystyrene as a host polymer, Current Applied Physics. (2009) 9, no. 1, 161–164, 2-s2.0-51249101905, https://doi.org/10.1016/j.cap.2008.01.004.
- 150 Takakuwa A., Misaki M., Yoshida Y., and Yase K., Micropatterning of emitting layers by microcontact printing and application to organic light-emitting diodes, Thin Solid Films. (2009) 518, no. 2, 555–558, 2-s2.0-70349873215, https://doi.org/10.1016/j.tsf.2009.07.046.
- 151 Logothetidis S., Flexible organic electronic devices: materials, process and applications, Materials Science and Engineering B: Solid-State Materials for Advanced Technology. (2008) 152, no. 1–3, 96–104, 2-s2.0-54849441632, https://doi.org/10.1016/j.mseb.2008.06.009.
- 152 Z. Bao and J. Locklin, Organic Field-Effect Transistors, 2007, CRC Press.
- 153 P. Gomez-Romero and C. Sanchez, Functional Hybrid Materials, 2004, Wiley-VCH.
- 154 Tang C. W. and vanslyke S. A., Organic electroluminescent diodes, Applied Physics Letters. (1987) 51, no. 12, 913–915, 2-s2.0-21544459113, https://doi.org/10.1063/1.98799.
- 155 Forrest S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature. (2004) 428, no. 6986, 911–918, 2-s2.0-2342486652, https://doi.org/10.1038/nature02498.
- 156 Dasgupta S., Stoesser G., Schweikert N., Hahn R., Dehm S., Kruk R., and Hahn H., Printed and electrochemically gated, high-mobility, inorganic oxide nanoparticle FETs and their suitability for high-frequency applications, Advanced Functional Materials. (2012) 22, no. 23, 4909–4919, 2-s2.0-84870593332, https://doi.org/10.1002/adfm.201200951.
- 157 Jørgensen M., Norrman K., Gevorgyan S. A., Tromholt T., Andreasen B., and Krebs F. C., Stability of polymer solar cells, Advanced Materials. (2012) 24, no. 5, 580–612, 2-s2.0-84856349298, https://doi.org/10.1002/adma.201104187.
- 158 Mishra A. and Bäuerle P., Small molecule organic semiconductors on the move: promises for future solar energy technology, Angewandte Chemie: International Edition. (2012) 51, no. 9, 2020–2067, 2-s2.0-84857510123, https://doi.org/10.1002/anie.201102326.
- 159 Xu X., Davanco M., Qi X., and Forrest S. R., Direct transfer patterning on three dimensionally deformed surfaces at micrometer resolutions and its application to hemispherical focal plane detector arrays, Organic Electronics. (2008) 9, no. 6, 1122–1127, 2-s2.0-53749085056, https://doi.org/10.1016/j.orgel.2008.07.011.
- 160 Li R., Jiang L., Meng Q., Gao J., Li H., Tang Q., He M., Hu W., Liu Y., and Zhu D., Micrometer-sized organic single crystals, anisotropic transport, and field-effect transistors of a fused-ring thienoacene, Advanced Materials. (2009) 21, no. 44, 4492–4495, 2-s2.0-72049089015, https://doi.org/10.1002/adma.200900934.
- 161 Wu Y., Liu P., Ong B. S., Srikumar T., Zhao N., Botton G., and Zhu S., Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors, Applied Physics Letters. (2005) 86, no. 14, 1–3, 2-s2.0-17444412254, https://doi.org/10.1063/1.1894597, 142102.
- 162 Li L., Tang Q., Li H., Yang X., Hu W., Song Y., Shuai Z., Xu W., Liu Y., and Zhu D., An ultra closely π-stacked organic semiconductor for high performance field-effect transistors, Advanced Materials. (2007) 19, no. 18, 2613–2617, 2-s2.0-34748858122, https://doi.org/10.1002/adma.200700682.
- 163 Toccoli T., Tonezzer M., Bettotti P., Coppedè N., Larcheri S., Pallaoro A., Pavesi L., and Iannotta S., Supersonic molecular beams deposition of α-quaterthiophene: Enhanced growth control and devices performances, Organic Electronics. (2009) 10, no. 3, 521–526, 2-s2.0-62649097690, https://doi.org/10.1016/j.orgel.2008.12.017.
- 164 Tonezzer M., Rigo E., Gottardi S., Bettotti P., Pavesi L., Iannotta S., and Toccoli T., Role of kinetic energy of impinging molecules in the α-sexithiophene growth, Thin Solid Films. (2011) 519, no. 12, 4110–4113, 2-s2.0-79953688216, https://doi.org/10.1016/j.tsf.2011.01.147.
- 165 Gottardi S., Toccoli T., Iannotta S., Bettotti P., Cassinese A., Barra M., Ricciotti L., and Kubozono Y., Optimizing picene molecular assembling by supersonic molecular beam deposition, Journal of Physical Chemistry C. (2012) 116, no. 46, 24503–24511, 2-s2.0-84870266141, https://doi.org/10.1021/jp304561s.
- 166 Antoniadis H., Abkowitz M. A., and Hsieh B. R., Carrier deep-trapping mobility-lifetime products in poly(p-phenylene vinylene), Applied Physics Letters. (1994) 65, no. 16, 2030–2032, 2-s2.0-21544462242, https://doi.org/10.1063/1.112784.
- 167 Chikamatsu M., Mikami T., Chisaka J., Yoshida Y., Azumi R., Yase K., Shimizu A., Kubo T., Morita Y., and Nakasuji K., Ambipolar organic field-effect transistors based on a low band gap semiconductor with balanced hole and electron mobilities, Applied Physics Letters. (2007) 91, no. 4, 2-s2.0-34547398570, https://doi.org/10.1063/1.2766696, 043506.
- 168 Yang C.-Y., Cheng S.-S., Ou C.-W., Chuang Y.-C., Wu M.-C., and Chu C.-W., Balancing the ambipolar conduction for pentacene thin film transistors through bifunctional electrodes, Applied Physics Letters. (2008) 92, no. 25, 2-s2.0-46049104402, https://doi.org/10.1063/1.2939553, 253307.
- 169 Reineke S., Lindner F., Schwartz G., Seidler N., Walzer K., Lüssem B., and Leo K., White organic light-emitting diodes with fluorescent tube efficiency, Nature. (2009) 459, no. 7244, 234–238, 2-s2.0-66149083087, https://doi.org/10.1038/nature08003.
- 170 Meerheim R., Furno M., Hofmann S., Lüssem B., and Leo K., Quantification of energy loss mechanisms in organic light-emitting diodes, Applied Physics Letters. (2010) 97, no. 25, 2-s2.0-78650756211, https://doi.org/10.1063/1.3527936, 253305.
- 171 Sasabe H., Chiba T., Su S.-J., Pu Y.-J., Nakayama K.-I., and Kido J., 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices, Chemical Communications. (2008) no. 44, 5821–5823, 2-s2.0-56349110008, https://doi.org/10.1039/b812270a.
- 172 Su S.-J., Tanaka D., Li Y.-J., Sasabe H., Takeda T., and Kido J., Novel four-pyridylbenzene-armed biphenyls as electron-transport materials for phosphorescent OLEDs, Organic Letters. (2008) 10, no. 5, 941–944, 2-s2.0-55749089942, https://doi.org/10.1021/ol7030872.
- 173 Su S.-J., Gonmori E., Sasabe H., and Kido J., Highly efficient organic blue-and white-light-emitting devices having a carrier- And exciton-confining structure for reduced efficiency roll-off, Advanced Materials. (2008) 20, no. 21, 4189–4194, 2-s2.0-55749085458, https://doi.org/10.1002/adma.200801375.
- 174 Xiao L., Su S.-J., Agata Y., Lan H., and Kido J., Nearly 100% internal quantum efficiency in an organic blue-light electrophosphorescent device using a weak electron transporting material with a wide energy gap, Advanced Materials. (2009) 21, no. 12, 1271–1274, 2-s2.0-66149148288, https://doi.org/10.1002/adma.200802034.
- 175 Laquai F., Park Y.-S., Kim J.-J., and Basché T., Excitation energy transfer in organic materials: From fundamentals to optoelectronic devices, Macromolecular Rapid Communications. (2009) 30, no. 14, 1203–1231, 2-s2.0-67650594790, https://doi.org/10.1002/marc.200900309.
- 176 Köler A. and Bässler H., Triplet states in organic semiconductors, Materials Science and Engineering R: Reports. (2009) 66, no. 4–6, 71–109.
- 177 Chénais S. and Forget S., Recent advances in solid-state organic lasers, Polymer International. (2012) 61, no. 3, 390–406, 2-s2.0-84856667047, https://doi.org/10.1002/pi.3173.
- 178 A. Buckley, Organic Light Emitting Diodes, 2013, Woodhead.
- 179 Yan D., Wang H., and Du B., Introduction to Organic seniconductor Heterojunctions, 2010, John Wiley & Sons.
- 180 Rogers J. A., Bao Z., Baldwin K., Dodabalapur A., Crone B., Raju V. R., Kuck V., Katz H., Amundson K., Ewing J., and Drzaic P., Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks, Proceedings of the National Academy of Sciences of the United States of America. (2001) 98, no. 9, 4835–4840, 2-s2.0-0035942286, https://doi.org/10.1073/pnas.091588098.
- 181 Sheraw C. D., Zhou L., Huang J. R., Gundlach D. J., Jackson T. N., Kane M. G., Hill I. G., Hammond M. S., Campi J., Greening B. K., Francl J., and West J., Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates, Applied Physics Letters. (2002) 80, no. 6, 1088–1090, 2-s2.0-79956050505, https://doi.org/10.1063/1.1448659.
- 182 Kawaguchi H., Someya T., Sekitani T., and Sakurai T., Cut-and-paste customization of organic FET integrated circuit and its application to electronic artificial skin, IEEE Journal of Solid-State Circuits. (2005) 40, no. 1, 177–185, 2-s2.0-11944268925, https://doi.org/10.1109/JSSC.2004.837259.
- 183 Baude P. F., Ender D. A., Haase M. A., Kelley T. W., Muyres D. V., and Theiss S. D., Pentacene-based radio-frequency identification circuitry, Applied Physics Letters. (2003) 82, no. 22, 3964–3966, 2-s2.0-0038307224, https://doi.org/10.1063/1.1579554.
- 184 Myny K., van Winckel S., Steudel S., Vicca P., De Jonge S., Beenhakkers M. J., Sele C. W., van Aerle N. A. J. M., Gelinck G. H., Genoe J., and Heremans P., An inductively-coupled 64b organic RFID tag operating at 13.56MHz with a data rate of 787b/s, Proceedings of the IEEE International Solid State Circuits Conference (ISSCC ′08), February 2008, 285–614, 2-s2.0-49549100492, https://doi.org/10.1109/ISSCC.2008.4523171.
- 185 Ohmori Y., Hikita M., Kajii H., Tsukagawa T., Yoshino K., Ozaki M., Fujii A., Tomaru S., Imamura S., Takenaka H., Kobayashi J., and Yamamoto F., Organic electroluminescent diodes as a light source for polymeric waveguides toward organic integrated optical devices, Thin Solid Films. (2001) 393, no. 1-2, 267–272, 2-s2.0-0035423261, https://doi.org/10.1016/S0040-6090(01)01082-3.
- 186 Ohmori Y., Kajii H., Kaneko M., Yoshino K., Ozaki M., Fujii A., Hikita M., Takenaka H., and Taneda T., Realization of polymeric optical integrated devices utilizing organic light-emitting diodes and photodetectors fabricated on a polymeric waveguide, IEEE Journal on Selected Topics in Quantum Electronics. (2004) 10, no. 1, 70–78, 2-s2.0-2442532901, https://doi.org/10.1109/JSTQE.2004.824106.
- 187 Gather M. C., Ventsch F., and Meerholz K., Embedding organic light-emitting diodes into channel waveguide structures, Advanced Materials. (2008) 20, no. 10, 1966–1971, 2-s2.0-55049131974, https://doi.org/10.1002/adma.200702837.
- 188 Gwinner M. C., Khodabakhsh S., Song M. H., Schweizer H., Giessen H., and Sirringhaus H., Integration of a rib waveguide distributed feedback structure into a light-emitting polymer field-effect transistor, Advanced Functional Materials. (2009) 19, no. 9, 1360–1370, 2-s2.0-66149154263, https://doi.org/10.1002/adfm.200801897.
- 189 Sakka S., Handbook of Sol-Gel Science and Technology, 2005, Kluwer Academic.
- 190 Brinker C. J. and Scherer G. W., Sol-Gel Science, 1990, Academic Press, San Diego, Calif, USA.
- 191 Sorarù G. D., Modena S., Bettotti P., Das G., Mariotto G., and Pavesi L., Si nanocrystals obtained through polymer pyrolysis, Applied Physics Letters. (2003) 83, no. 4, 749–751, 2-s2.0-0042513748, https://doi.org/10.1063/1.1587876.
- 192 Das G., Ferraioli L., Bettotti P., De Angelis F., Mariotto G., Pavesi L., Di Fabrizio E., and Soraru G. D., Si-nanocrystals/SiO2 thin films obtained by pyrolysis of sol-gel precursors, Thin Solid Films. (2008) 516, no. 20, 6804–6807, 2-s2.0-45849090406, https://doi.org/10.1016/j.tsf.2007.12.007.
- 193 Henderson E. J., Kelly J. A., and Veinot J. G. C., Influence of HSiO1.5 sol-gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals, Chemistry of Materials. (2009) 21, no. 22, 5426–5434, 2-s2.0-72149102150, https://doi.org/10.1021/cm902028q.
- 194 Karakuscu A., Guider R., Pavesi L., and Sorarù G. D., White luminescence from sol-gel-derived SiOC thin films, Journal of the American Ceramic Society. (2009) 92, no. 12, 2969–2974, 2-s2.0-70450265432, https://doi.org/10.1111/j.1551-2916.2009.03343.x.
- 195 Chen C., Han C., Wang L., Zhang H., Sun X., Wang F., and Zhang D., 650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials, IEEE Journal of Quantum Electronics. (2013) 49, no. 5, 447–453, 2-s2.0-84875824706, https://doi.org/10.1109/JQE.2013.2252147.
- 196 Zhang X., Qian M., Zeng X., Zhao Z., Lasante J., and Plante P., Design and fabrication of single mode rib waveguides using sol-gel derived organic-inorganic hybrid materials, Journal of Sol-Gel Science and Technology. (2008) 45, no. 1, 103–107, 2-s2.0-37749049113, https://doi.org/10.1007/s10971-007-1635-6.
- 197 Jia C. Y., Que W., and Liu W. G., Preparation and optical properties of sol-gel derived photo-patternable organic-inorganic hybrid films for optical waveguide applications, Thin Solid Films. (2009) 518, no. 1, 290–294, 2-s2.0-69549124127, https://doi.org/10.1016/j.tsf.2009.06.026.
- 198 Karasiński P., Tyszkiewicz C., Rogoziński R., and Jaglarz J., Optical rib waveguides based on sol-gel derived silica-titania films, Thin Solid Films. (2011) 519, no. 16, 5544–5551, 2-s2.0-79957987404, https://doi.org/10.1016/j.tsf.2011.02.064.
- 199 Krivec S., Matsko N., Satzinger V., Pucher N., Caller N., Koch T., Schmidt V., Grogger W., Liska R., and Lichtenegger H. C., Silica-based, organically modified host material for waveguide structuring by two-photon-induced photopolymerization, Advanced Functional Materials. (2010) 20, no. 5, 811–819, 2-s2.0-77649203908, https://doi.org/10.1002/adfm.200901790.
- 200 Zhang X., Que W., Chen J., Gao T., Hu J., and Liu W., Fabrication of ridge waveguide structure from photosensitive TiO 2/ormosil hybrid films by using an ultraviolet soft imprint technique, Thin Solid Films. (2013) 531, 119–124, 2-s2.0-84875447726, https://doi.org/10.1016/j.tsf.2012.12.073.
- 201 Ferreira R. A. S., André P. S., and Carlos L. D., Organic-inorganic hybrid materials towards passive and active architectures for the next generation of optical networks, Optical Materials. (2010) 32, no. 11, 1397–1409, 2-s2.0-77956063227, https://doi.org/10.1016/j.optmat.2010.06.019.
- 202 Enami Y., Derose C. T., Mathine D., Loychik C., Greenlee C., Norwood R. A., Kim T. D., Luo J., Tian Y., Jen A. K.-Y., and Peyghambarian N., Hybrid polymersol-gel waveguide modulators with exceptionally large electro-optic coefficients, Nature Photonics. (2007) 1, no. 3, 180–185, 2-s2.0-34248357885, https://doi.org/10.1038/nphoton.2007.25.
- 203 Enami Y., Mathine D., Derose C. T., Norwood R. A., Luo J., Jen A. K.-Y., and Peyghambarian N., Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches, Applied Physics Letters. (2009) 94, no. 21, 2-s2.0-66549122377, https://doi.org/10.1063/1.3141452, 213513.
- 204 Psaltis D., Quake S. R., and Yang C., Developing optofluidic technology through the fusion of microfluidics and optics, Nature. (2006) 442, no. 7101, 381–386, 2-s2.0-33747133014, https://doi.org/10.1038/nature05060.
- 205 Intonti F., Vignolini S., Türck V., Colocci M., Bettotti P., Pavesi L., Schweizer S. L., Wehrspohn R., and Wiersma D., Rewritable photonic circuits, Applied Physics Letters. (2006) 89, no. 21, 2-s2.0-33845433698, https://doi.org/10.1063/1.2392720, 211117.
- 206 Hwang S.-W., Tao H., Kim D.-H., Cheng H., Song J.-K., Rill E., Brenckle M. A., Panilaitis B., Won S. M., Kim Y.-S., Song Y. M., Yu K. J., Ameen A. A., Li R., Su Y., Yang M., Kaplan D. L., Zakin M. R., Slepian M. J., Huang Y., Omenetto F. G., and Rogers J. A., A physically transient form of silicon electronics, Science. (2012) 337, no. 6102, 1640–1644, 2-s2.0-84866753558, https://doi.org/10.1126/science.1226325.
- 207 Irimia-Vladuab M., Green electronics: biodegradable and biocompatible materials and devices for sustainable future, Chemical Society Review. (2014) 43, no. 2, 588–610.
- 208 Tao H., Brenckle M. A., Yang M., Zhang J., Liu M., Siebert S. M., Averitt R. D., Mannoor M. S., McAlpine M. C., Rogers J. A., Kaplan D. L., and Omenetto F. G., Silk-based conformal, adhesive, edible food sensors, Advanced Materials. (2012) 24, no. 8, 1067–1072, 2-s2.0-84863132674, https://doi.org/10.1002/adma.201103814.
- 209 Lawrence B. D., Cronin-Golomb M., Georgakoudi I., Kaplan D. L., and Omenetto F. G., Bioactive silk protein biomaterial systems for optical devices, Biomacromolecules. (2008) 9, no. 4, 1214–1220, 2-s2.0-43149124805, https://doi.org/10.1021/bm701235f.