Several New Third-Order and Fourth-Order Iterative Methods for Solving Nonlinear Equations
Abstract
In order to find the zeros of nonlinear equations, in this paper, we propose a family of third-order and optimal fourth-order iterative methods. We have also obtained some particular cases of these methods. These methods are constructed through weight function concept. The multivariate case of these methods has also been discussed. The numerical results show that the proposed methods are more efficient than some existing third- and fourth-order methods.
1. Introduction
This paper is organized as follows. In Section 2, we present a new class of third-order and fourth-order iterative methods by using the concept of weight functions, which includes some existing methods and also provides some new methods. We have extended some of these methods for multivariate case. Finally, we employ some numerical examples and compare the performance of our proposed methods with some existing third- and fourth-order methods.
2. Methods and Convergence Analysis
First we give some definitions which we will use later.
Definition 1. Let f(x) be a real valued function with a simple root α and let xn be a sequence of real numbers that converge towards α. The order of convergence m is given by
Definition 2. Let n be the number of function evaluations of the new method. The efficiency of the new method is measured by the concept of efficiency index [8, 9] and defined as
2.1. Third-Order Iterative Methods
Theorem 3. Let α be a simple root of the function f and let f have sufficient number of continuous derivatives in a neighborhood of α. The method (4) has third-order convergence, when the weight function A(t) satisfies the following conditions:
Proof. Suppose en = xn − α is the error in the nth iteration and ch = f(h)(α)/h! f′(α), h ≥ 1. Expanding f(xn) and f′(xn) around the simple root α with Taylor series, then we have
Hence, from (11) and (4) we obtain the following general equation, which has third-order convergence:
Particular Cases. To find different third-order methods we take a = 2/3 in (4).
Case 1. If we take A(t) = (7 − 3t)/4 in (4), then we get the formula:
Case 2. If we take A(t) = 4t/(7t − 3) in (4), then we get the formula:
Case 3. If we take A(t) = 4/(1 + 3t) in (4), then we get the formula:
Case 4. If we take A(t) = (t + 7)/(1 + 7t) in (4), then we get the formula:
Case 5. If we take A(t) = (t + 3)/4t in (4), then we get the formula:
Remark 4. By taking different values of a and weight function A(t) in (4), one can get a number of third-order iterative methods.
2.2. Optimal Fourth-Order Iterative Methods
Theorem 5. Let α be a simple root of the function f and let f have sufficient number of continuous derivatives in a neighborhood of α. The method (22) has fourth-order convergence, when a = 2/3 and the weight functions A(t) and B(t) satisfy the following conditions:
Proof. Using (6) and putting a = 2/3 in the first step of (22), we have
Particular Cases
Method 1. If we take A(t) = (t + 3)/4t and B(t) = ((11/8) − (3/4)t + (3/8)t2), where t = f′(y)/f′(x), then the iterative method is given by
Method 2. If we take A(t) = (7 − 3t)/4 and B(t) = ((17/8) − (9/4)t + (9/8)t2), where t = f′(y)/f′(x), then the iterative method is given by
Method 3. If we take A(t) = 4t/(7t − 3) and B(t) = ((13/16) + (3/8)t − (3/16)t2), where t = f′(y)/f′(x), then the iterative method is given by
Method 4. If we take A(t) = 4/(1 + 3t) and B(t) = ((25/8) − (9/8)t + (9/16)t2), where t = f′(y)/f′(x), then the iterative method is given by
Method 5. If we take A(t) = 4/(1 + 3t) and B(t) = 1 + (9/16) (t−1)2, where t = f′(y)/f′(x), then the iterative method is given by
Method 6. If we take A(t) = (t + 7)/(1 + 7t) and B(t) = ((47/32) − (15/16)t − (15/32)t2), where t = f′(y)/f′(x), then the iterative method is given by
Remark 6. By taking different values of A(t) and B(t) in (22), one can obtain a number of fourth-order iterative methods.
3. Further Extension to Multivariate Case
Theorem 7. Let F : D⊆ℜn → ℜn be sufficiently Frechet differentiable in a convex set D, containing a root ξ of F(X) = 0. Let one suppose that F′(X) is continuous and nonsingular in D and X(0) is close to ξ. Then the sequence {X(k)} k≥0 obtained by the iterative expression (40) converges to ξ with order three.
Proof. For the convenience of calculation, we replace 2/3 by β in the first step of (40). From (41), (42), and (43), we have
where
By virtue of (47) the first step of the method (40) becomes
Theorem 8. Let F : D⊆ℜn → ℜn be sufficiently Frechet differentiable in a convex set D, containing a root ξ of F(X) = 0. Let one suppose that F′(X) is continuous and nonsingular in D and X(0) is close to ξ. Then the sequence {X(k)} k≥0 obtained by the iterative expression (61) converges to ξ with order four.
Proof. For the convenience of calculation we replace 2/3 by β and put a1 = 13/16, a2 = 3/8, and a3 = −3/16 in (61). From (46) and (50), we have
4. Numerical Testing
4.1. Single Variate Case
In this section, ten different test functions have been considered in Table 1 for single variate case to illustrate the accuracy of the proposed iterative methods. The root of each nonlinear test function is also listed. All computations presented here have been performed in MATHEMATICA 8. Many streams of science and engineering require very high precision degree of scientific computations. We consider 1000 digits floating point arithmetic using “SetAccuracy []” command. Here we compare the performance of our proposed methods with some well-established third-order and fourth-order iterative methods. In Table 2, we have represented Huen’s method by HN3, our proposed third-order method (15) by M3, fourth-order method (17) of [5] by SL4, fourth-order Jarratt’s method by JM4, and proposed fourth-order method by M4. The results are listed in Table 2.
f(x) | α |
---|---|
f1(x) = [sin(x)] 2 + x | α1 = 0 |
f2(x) = [sin(x)] 2 − x2 + 1 | α2 ≈ 1.404491648215341226035086817786 |
f3(x) = e−x + sin(x) − 1 | α3 ≈ 2.076831274533112613070044244750 |
f4(x) = x2 + sin(x) + x | α4 = 0 |
α5 ≈ 1.306175201846827825014842909066 | |
f6(x) = x6 − 10x3 + x2 − x + 3 | α6 ≈ 0.658604847118140436763860014710 |
f7(x) = x4 − x3 + 11x − 7 | α7 ≈ 0.803511199110777688978137660293 |
f8(x) = x3 − cos(x) + 2 | α8 ≈ −1.172577964753970012673332714868 |
α9 ≈ 0.641714370872882658398565300316 | |
f10(x) = log(x) − x3 + 2sin(x) | α10 ≈ 1.297997743280371847164479238286 |
|f| | Guess | HN3 | M3 | SL4 | JM4 | M4 |
---|---|---|---|---|---|---|
|f1| | 0.3 | 0.1e − 57 | 0.3e − 93 | 0.2e − 172 | 0.4e − 162 | 0.5e − 199 |
0.2 | 0.5e − 69 | 0.1e − 91 | 0.1e − 186 | 0.2e − 198 | 0.1e − 245 | |
0.1 | 0.1e − 90 | 0.6e − 107 | 0.5e − 241 | 0.2e − 266 | 0.6e − 339 | |
− 0.1 | 0.2e − 85 | 0.1e − 93 | 0.1e − 198 | 0.1e − 247 | 0.7e − 278 | |
−0.2 | 0.3e − 59 | 0.9e − 64 | 0.1e − 99 | 0.8e − 161 | 0.5e − 165 | |
|f2| | 1.3 | 0.1e − 92 | 0.3e − 102 | 0.1e − 244 | 0.4e − 278 | 0.6e − 297 |
1.2 | 0.1e − 67 | 0.7e − 75 | 0.2e − 152 | 0.2e − 197 | 0.7e − 200 | |
1.1 | 0.8e − 53 | 0.1e − 57 | 0.4e − 94 | 0.5e − 147 | 0.2e − 132 | |
1.4 | 0.6e − 205 | 0.7e − 217 | 0.1e − 613 | 0.5e − 634 | 0.1e − 672 | |
1.5 | 0.3e − 99 | 0.9e − 114 | 0.1e − 296 | 0.2e − 300 | 0.7e − 374 | |
|f3| | 2.0 | 0.1e − 112 | 0.2e − 122 | 0.8e − 362 | 0.1e − 325 | 0.1e − 418 |
2.3 | 0.1e − 81 | 0.1e − 102 | 0.1e − 215 | 0.1e − 229 | 0.5e − 275 | |
2.1 | 0.7e − 157 | 0.1e − 169 | 0.6e − 493 | 0.1e − 466 | 0.3e − 543 | |
2.2 | 0.3e − 100 | 0.1e − 116 | 0.4e − 288 | 0.2e − 288 | 0.1e − 343 | |
1.9 | 0.1e − 81 | 0.5e − 88 | 0.1e − 223 | 0.1e − 224 | 0.3e − 272 | |
|f4| | 0.3 | 0.4e − 78 | 0.9e − 101 | 0.4e − 157 | 0.3e − 219 | 0.2e − 257 |
0.2 | 0.1e − 90 | 0.3e − 109 | 0.5e − 201 | 0.4e − 258 | 0.2e − 301 | |
0.1 | 0.2e − 113 | 0.2e − 128 | 0.2e − 279 | 0.1e − 328 | 0.1e − 379 | |
−0.2 | 0.9e − 84 | 0.4e − 90 | 0.7e − 223 | 0.2e − 229 | 0.1e − 286 | |
−0.1 | 0.8e − 110 | 0.5e − 119 | 0.1e − 285 | 0.3e − 314 | 0.2e − 483 | |
|f5| | 1.35 | 0.1e − 101 | 0.6e − 112 | 0.3e − 252 | 0.1e − 312 | 0.2e − 320 |
1.31 | 0.1e − 77 | 0.1e − 86 | 0.3e − 170 | 0.1e − 236 | 0.1e − 233 | |
1.29 | 0.1e − 69 | 0.4e − 78 | 0.1e − 141 | 0.5e − 211 | 0.5e − 203 | |
1.15 | 0.8e − 39 | 0.2e − 42 | 0.7e − 28 | 0.8e − 107 | 0.1e − 510 | |
1.20 | 0.1e − 46 | 0.4e − 52 | 0.2e − 54 | 0.3e − 135 | 0.1e − 101 | |
|f6| | 0.7 | 0.7e − 109 | 0.1e − 122 | 0.1e − 288 | 0.2e − 334 | 0.1e − 380 |
0.6 | 0.4e − 94 | 0.7e − 104 | 0.9e − 229 | 0.3e − 286 | 0.8e − 300 | |
0.5 | 0.3e − 57 | 0.2e − 63 | 0.3e − 95 | 0.4e − 166 | 0.2e − 154 | |
0.8 | 0.1e − 68 | 0.2e − 87 | 0.2e − 171 | 0.3e − 207 | 0.2e − 282 | |
1.2 | 0.6e − 36 | 0.6e − 52 | 0.1e − 151 | 0.2e − 97 | 0.1e − 112 | |
|f7| | 0.65 | 0.2e − 294 | 0.1e − 306 | 0.2e − 588 | 0.2e − 807 | 0.8e − 810 |
0.75 | 0.2e − 177 | 0.8e − 187 | 0.5e − 250 | 0.4e − 462 | 0.1e − 457 | |
0.95 | 0.3e − 129 | 0.5e − 130 | 0.1e − 134 | 0.2e − 295 | 0.2e − 290 | |
0.90 | 0.1e − 137 | 0.3e − 140 | 0.2e − 153 | 0.3e − 322 | 0.9e − 318 | |
0.80 | 0.2e − 160 | 0.3e − 167 | 0.3e − 207 | 0.9e − 399 | 0.6e − 395 | |
|f8| | − 1.0 | 0.2e − 64 | 0.4e − 72 | 0.1e − 112 | 0.1e − 193 | 0.5e − 182 |
− 1.1 | 0.3e − 96 | 0.2e − 106 | 0.6e − 224 | 0.8e − 297 | 0.8e − 301 | |
− 1.2 | 0.6e − 132 | 0.1e − 144 | 0.3e − 345 | 0.8e − 412 | 0.6e − 431 | |
−1.5 | 0.5e − 50 | 0.6e − 71 | 0.5e − 100 | 0.2e − 155 | 0.5e − 275 | |
−0.9 | 0.1e − 47 | 0.2e − 52 | 0.5e − 46 | 0.1e − 135 | 0.6e − 105 | |
|f9| | 0.9 | 0.1e − 127 | 0.6e − 133 | 0.1e − 152 | 0.5e − 315 | 0.2e − 307 |
0.7 | 0.2e − 178 | 0.1e − 186 | 0.1e − 315 | 0.5e − 455 | 0.4e − 451 | |
0.6 | 0.2e − 189 | 0.1e − 206 | 0.1e − 351 | 0.6e − 482 | 0.2e − 479 | |
0.8 | 0.6e − 144 | 0.1e − 149 | 0.5e − 206 | 0.9e − 356 | 0.3e − 350 | |
1.0 | 0.2e − 117 | 0.2e − 123 | 0.3e − 117 | 0.7e − 295 | 0.1e − 284 | |
|f10| | 1.2 | 0.4e − 74 | 0.2e − 81 | 0.3e − 154 | 0.1e − 213 | 0.8e − 229 |
2.0 | 0.7e − 26 | 0.1e − 52 | 0.2e − 75 | 0.5e − 76 | 0.1e − 107 | |
1.5 | 0.2e − 57 | 0.1e − 79 | 0.3e − 139 | 0.1e − 170 | 0.2e − 229 | |
1.3 | 0.9e − 214 | 0.7e − 226 | 0.1e − 612 | 0.4e − 660 | 0.7e − 708 | |
1.8 | 0.3e − 33 | 0.2e − 76 | 0.1e − 83 | 0.1e − 97 | 0.7e − 134 |
An effective way to compare the efficiency of methods is CPU time utilized in the execution of the programme. In present work, the CPU time has been computed using the command “TimeUsed []” in MATHEMATICA. It is well known that the CPU time is not unique and it depends on the specification of the computer. The computer characteristic is Microsoft Windows 8 Intel(R) Core(TM) i5-3210M CPU@ 2.50 GHz with 4.00 GB of RAM, 64-bit operating system throughout this paper. The mean CPU time is calculated by taking the mean of 10 performances of the programme. The mean CPU time (in seconds) for different methods is given in Table 3.
Function | CPU time | |||||
---|---|---|---|---|---|---|
Guess | HN3 | M3 | SL4 | JM4 | M4 | |
f1 | 0.3 | 0.2867 | 0.2644 | 0.3060 | 0.2449 | 0.2449 |
f2 | 1.5 | 0.2943 | 0.2510 | 0.3049 | 0.2682 | 0.3043 |
f3 | 2.3 | 0.3019 | 0.3658 | 0.3457 | 0.3562 | 0.3483 |
f4 | 0.3 | 0.3091 | 0.2850 | 0.2832 | 0.2399 | 0.2428 |
f5 | 1.35 | 0.3399 | 0.3694 | 0.3938 | 0.4149 | 0.3940 |
f6 | 0.7 | 0.2896 | 0.2708 | 0.2388 | 0.2613 | 0.2550 |
f7 | 0.65 | 0.2517 | 0.2356 | 0.2938 | 0.2644 | 0.2880 |
f8 | −1.00 | 0.2697 | 0.2279 | 0.2739 | 0.2934 | 0.2900 |
4.2. Multivariate Case
Further, six nonlinear systems (Examples 9–14) are considered for numerical testing of system of nonlinear equations. Here we compare our proposed third-order method (40) (MM3) with Algorithm (2.2) (NR1) and Algorithm (2.3) (NR2) of [13] and fourth-order method (61) (MM4) with (22) (SH4) of [14] and method (3.4) (BB4) of [15]. The comparison of norm of the function for different iterations is given in Table 4.
Example | Guess | Method | | | F(x(1))|| | | | F(x(2))|| | | | F(x(3))|| | | | F(x(4))|| |
---|---|---|---|---|---|---|
Example 9 | (5.1, 6.1) | NR1 | 3.8774e − 4 | 9.2700e − 15 | 7.7652e − 47 | 4.0858e − 143 |
NR2 | 3.8774e − 4 | 9.2700e − 15 | 7.7652e − 47 | 4.0858e − 143 | ||
MM3 | 1.2657e − 4 | 1.0705e − 16 | 3.9789e − 53 | 1.8320e − 162 | ||
BB4 | 2.1416e − 5 | 1.1267e − 24 | 4.6477e − 102 | 1.2561e − 411 | ||
SH4 | 1.2923e − 5 | 9.2420e − 26 | 1.2710e − 106 | 4.2184e − 430 | ||
MM4 | 3.0768e − 6 | 3.9419e − 29 | 8.7758e − 121 | 2.1039e − 487 | ||
Example 10 | (1, 0.5, 1.5) | NR1 | 3.0006e − 2 | 1.3681e − 4 | 1.3174e − 11 | 1.1754e − 32 |
NR2 | 2.9765e − 2 | 1.3230e − 4 | 1.1848e − 11 | 8.5484e − 33 | ||
MM3 | 9.9051e − 3 | 3.7473e − 6 | 9.1835e − 17 | 1.3035e − 48 | ||
BB4 | 2.1133e − 2 | 6.9602e − 6 | 7.1401e − 20 | 7.7987e − 76 | ||
SH4 | 1.5676e − 2 | 1.1309e − 6 | 2.4814e − 23 | 5.5195e − 90 | ||
MM4 | 6.1451e − 3 | 8.1169e − 8 | 2.3264e − 28 | 6.9642e − 110 | ||
Example 11 | (0.5, 0.5, 0.5, −0.2) | NR1 | 2.3097e − 3 | 7.5761e − 10 | 5.6516e − 30 | 2.8662e − 91 |
NR2 | 2.3097e − 3 | 7.5761e − 10 | 5.6516e − 30 | 2.8662e − 91 | ||
MM3 | 9.4336e − 4 | 1.6380e − 11 | 1.7401e − 35 | 2.5268e − 108 | ||
BB4 | 9.1400e − 4 | 1.8627e − 14 | 8.7599e − 59 | 6.9713e − 238 | ||
SH4 | 5.3618e − 4 | 1.4537e − 15 | 2.1746e − 63 | 1.7744e − 256 | ||
MM4 | 7.7084e − 5 | 2.1932e − 20 | 3.4979e − 84 | 3.6487e − 341 | ||
Example 12 | (1.0, 2.0) | NR1 | 2.1427e − 3 | 1.7987e − 10 | 1.0504e − 31 | 2.0958e − 95 |
NR2 | 2.1498e − 3 | 1.8262e − 10 | 1.1001e − 31 | 2.4077e − 95 | ||
MM3 | 7.6174e − 4 | 2.3592e − 12 | 7.9632e − 38 | 3.0435e − 114 | ||
BB4 | 5.3124e − 4 | 8.2104e − 16 | 3.8411e − 63 | 2.8216e − 252 | ||
SH4 | 2.9895e − 4 | 6.5567e − 17 | 1.8332e − 67 | 1.5913e − 269 | ||
MM4 | 1.0131e − 4 | 2.8562e − 19 | 3.4019e − 77 | 2.4842e − 308 | ||
Example 13 | (−0.8, 1.1, 1.1) | NR1 | 2.9692e − 4 | 5.5149e − 14 | 3.8063e − 40 | 1.2456e − 118 |
NR2 | 2.9718e − 5 | 5.5137e − 14 | 3.8044e − 40 | 1.2438e − 118 | ||
MM3 | 9.8775e − 6 | 6.7719e − 16 | 2.3491e − 46 | 9.7596e − 138 | ||
BB4 | 4.0723e − 6 | 1.6873e − 21 | 9.1974e − 83 | 7.8287e − 328 | ||
SH4 | 2.1907e − 6 | 8.6294e − 23 | 3.6734e − 87 | 1.1711e − 349 | ||
MM4 | 1.0838e − 6 | 8.4404e − 25 | 1.2327e − 96 | 4.3437e − 384 | ||
Example 14 | (0.5, 1.5) | NR1 | 1.8661e − 1 | 7.1492e − 4 | 4.5647e − 11 | 1.1889e − 32 |
NR2 | 1.7417e − 1 | 5.7596e − 4 | 2.3870e − 11 | 1.7000e − 33 | ||
MM3 | 1.2770e − 1 | 4.6794e − 5 | 4.1708e − 15 | 3.0222e − 45 | ||
BB4 | 9.8299e − 2 | 9.2624e − 6 | 8.3046e − 22 | 5.3716e − 86 | ||
SH4 | 1.0359e − 1 | 5.4166e − 6 | 4.6302e − 23 | 2.4821e − 91 | ||
MM4 | 1.4490e − 1 | 1.0558e − 5 | 6.7122e − 22 | 1.0964e − 86 |
Example 9. Consider
Example 10. Consider
Example 11. Consider
Example 12. Consider
Example 13. Consider
Example 14. Consider
5. Conclusion
In the present work, we have provided a family of third- and optimal fourth-order iterative methods which yield some existing as well as many new third-order and fourth-order iterative methods. The multivariate case of these methods has also been considered. The efficiency of our methods is supported by Table 2 and Table 4.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments
The authors would like to express their sincerest thanks to the editor and reviewer for their constructive suggestions, which significantly improved the quality of this paper. The authors would also like to record their sincere thanks to Dr. F. Soleymani for providing his efficient cooperation.