Volume 2014, Issue 1 751070
Research Article
Open Access

Development of Thermal Models and Analysis of UO2-BeO Fuel during a Loss of Coolant Accident

Deepthi Chandramouli

Deepthi Chandramouli

School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA purdue.edu

Search for more papers by this author
Shripad T. Revankar

Corresponding Author

Shripad T. Revankar

School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA purdue.edu

Division of Advanced Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 784-790, Republic of Korea

Search for more papers by this author
First published: 26 August 2014
Citations: 19
Academic Editor: Adem Acir

Abstract

Small fraction of high conductivity BeO in UO2 fuel significantly improves thermal conductivity and also affects the overall performance of the fuel during steady state operation and during transients. In this study, performance of UO2-BeO composite under transient conditions such as loss of coolant accident (LOCA), using FRAPTRAN (fuel rod analysis program transient), was carried out. The subroutines in FRAPTRAN code that calculate key thermophysical properties such as thermal conductivity, specific heat capacity, and specific enthalpy were modified to account for the presence of the BeO in UO2. The fuel performance parameters like gas gap pressure, energy stored in fuel, and temperature profiles were studied. The simulation results showed reductions in fuel centerline temperatures and lower temperature drop across fuel rod cross-section under normal fuel operations. It was observed that there was reduction in gas gap pressure and energy stored in fuel. Transient conditions involving cladding rupture were investigated and important performance parameters such as cladding strain were studied. During these transients, the addition of BeO to UO2 fuel seems beneficiary.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.