ITO-Free Semitransparent Organic Solar Cells Based on Silver Thin Film Electrodes
Zhizhe Wang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorCorresponding Author
Chunfu Zhang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorDazheng Chen
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorShi Tang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorJincheng Zhang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorLi Sun
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorTing Heng
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorCorresponding Author
Yue Hao
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorZhizhe Wang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorCorresponding Author
Chunfu Zhang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorDazheng Chen
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorShi Tang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorJincheng Zhang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorLi Sun
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorTing Heng
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorCorresponding Author
Yue Hao
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School Of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an 710071, China xidian.edu.cn
Search for more papers by this authorAbstract
ITO-free semitransparent organic solar cells (OSCs) based on MoO3/Ag anodes with poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester films as the active layer are investigated in this work. To obtain the optimal transparent (MoO3)/Ag anode, ITO-free reference OSCs are firstly fabricated. The power conversion efficiency (PCE) of 2.71% is obtained for OSCs based on the optimal MoO3 (2 nm)/Ag (9 nm) anode, comparable to that of ITO-based reference OSCs (PCE of 2.85%). Then based on MoO3 (2 nm)/Ag (9 nm) anode, ITO-free semitransparent OSCs with different thickness combination of Ca and Ag as the cathodes are investigated. It is observed from our results that OSCs with Ca (15 nm)/Ag (15 nm) cathode have the optimal transparency. Meanwhile, the PCE of 1.79% and 0.67% is obtained for illumination from the anode and cathode side, respectively, comparable to that of similar ITO-based semitransparent OSCs (PCE of 1.59% and 0.75% for illumination from the anode and cathode side, resp.) (Sol. Energy Mater. Sol. Cells, 95, pp. 877–880, 2011). The transparency and PCE of ITO-free semitransparent OSCs can be further improved by introducing a light couple layer. The developed method is compatible with various substrates, which is instructive for further research of ITO-free semitransparent OSCs.
References
- 1 Brabec C. J., Organic photovoltaics: technology and market, Solar Energy Materials and Solar Cells. (2004) 83, no. 2-3, 273–292, https://doi.org/10.1016/j.solmat.2004.02.030, 2-s2.0-2642521445.
- 2 Peumans P., Yakimov A., and Forrest S. R., Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics. (2003) 93, no. 7, 3693–3723, https://doi.org/10.1063/1.1534621, 2-s2.0-0037389306.
- 3 Søndergaard R., Helgesen M., Jørgensen M., and Krebs F. C., Fabrication of polymer solar cells using aqueous processing for all layers including the metal back electrode, Advanced Energy Materials. (2011) 1, no. 1, 68–71, https://doi.org/10.1002/aenm.201000007, 2-s2.0-79953202509.
- 4 Krebs F. C., Fabrication and processing of polymer solar cells: a review of printing and coating techniques, Solar Energy Materials and Solar Cells. (2009) 93, no. 4, 394–412, https://doi.org/10.1016/j.solmat.2008.10.004, 2-s2.0-60449087889.
- 5 Dam H. F. and Krebs F. C., Simple roll coater with variable coating and temperature control for printed polymer solar cells, Solar Energy Materials and Solar Cells. (2012) 97, 191–196, https://doi.org/10.1016/j.solmat.2011.08.027, 2-s2.0-82955167832.
- 6 Green M. A., Emery K., Hishikawa Y., Warta W., and Dunlop E. D., Solar cell efficiency tables (version 40), Progress in Photovoltaics: Research and Applications. (2012) 20, no. 5, 606–614, https://doi.org/10.1002/pip.2267, 2-s2.0-84864480627.
- 7 Schueppel R., Timmreck R., Allinger N., Mueller T., Furno M., Uhrich C., Leo K., and Riede M., Controlled current matching in small molecule organic tandem solar cells using doped spacer layers, Journal of Applied Physics. (2010) 107, no. 4, 044503, https://doi.org/10.1063/1.3277051, 2-s2.0-77749327531.
- 8 Zhao D. W., Sun X. W., Jiang C. Y., Kyaw A. K. K., Lo G. Q., and Kwong D. L., Efficient tandem organic solar cells with an Al/ MoO3 intermediate layer, Applied Physics Letters. (2008) 93, no. 8, 083305, https://doi.org/10.1063/1.2976126, 2-s2.0-51349168073.
- 9 Hadipour A., de Boer B., and Blom P. W. M., Device operation of organic tandem solar cells, Organic Electronics. (2008) 9, no. 5, 617–624, https://doi.org/10.1016/j.orgel.2008.03.009, 2-s2.0-49049084033.
- 10 Li F., Ruan S., Xu Y., Meng F., Wang J., Chen W., and Shen L., Semitransparent inverted polymer solar cells using MoO3/Ag/ WO3 as highly transparent anodes, Solar Energy Materials and Solar Cells. (2011) 95, no. 3, 877–880, https://doi.org/10.1016/j.solmat.2010.11.009, 2-s2.0-78751648649.
- 11 Shen L., Ruan S., Guo W., Meng F., and Chen W., Semitransparent inverted polymer solar cells using MoO3/Ag/ V2O5 as transparent anodes, Solar Energy Materials & Solar Cells. (2012) 97, 59–63, https://doi.org/10.1016/j.solmat.2011.09.004, 2-s2.0-82955198444.
- 12 Shen L., Xu Y., Meng F., Li F., Ruan S., and Chen W., Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes, Organic Electronics: Physics, Materials, Applications. (2011) 12, no. 7, 1223–1226, https://doi.org/10.1016/j.orgel.2011.03.036, 2-s2.0-79955508904.
- 13 Hecht D. S., Hu L., and Irvin G., Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Advanced Materials. (2011) 23, no. 13, 1482–1513, https://doi.org/10.1002/adma.201003188, 2-s2.0-79953234742.
- 14 Lee J., Connor S. T., Cui Y., and Peumans P., Solution-processed metal nanowire mesh transparent electrodes, Nano Letters. (2008) 8, no. 2, 689–692, https://doi.org/10.1021/nl073296g, 2-s2.0-40449106707.
- 15 Chen H., du Pasquier A., Saraf G., Zhong J., and Lu Y., Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films, Semiconductor Science and Technology. (2008) 23, no. 4, 045004, https://doi.org/10.1088/0268-1242/23/4/045004, 2-s2.0-42449086805.
- 16 Park H., Kang J., Na S., Kim D., and Kim H., Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics, Solar Energy Materials and Solar Cells. (2009) 93, no. 11, 1994–2002, https://doi.org/10.1016/j.solmat.2009.07.016, 2-s2.0-69949172824.
- 17 Sun N., Fang G., Qin P., Zheng Q., Wang M., Fan X., Cheng F., Wan J., and Zhao X., Bulk heterojunction solar cells with NiO hole transporting layer based on AZO anode, Solar Energy Materials and Solar Cells. (2010) 94, no. 12, 2328–2331, https://doi.org/10.1016/j.solmat.2010.08.002, 2-s2.0-77957673260.
- 18 Kim Y. H., Sachse C., MacHala M. L., May C., Müller-Meskamp L., and Leo K., Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Advanced Functional Materials. (2011) 21, no. 6, 1076–1081, https://doi.org/10.1002/adfm.201002290, 2-s2.0-79952829865.
- 19 Choi S., PotscavageW. J.Jr., and Kippelen B., ITO-free large-area organic solar cells, Optics Express. (2010) 18, no. 19, A458–A466, https://doi.org/10.1364/OE.18.00A458, 2-s2.0-77956986909.
- 20 Guo F., Zhu X., Forberich K., Krantz J., Stubhan T., Salinas M., Halik M., Spallek S., Butz B., Spiecker E., Ameri T., Li N., Kubis P., Guldi D. M., Matt G. J., and Brabec C. J., ITO-free and fully solution-processed semitransparent organic solar cells with high fill factors, Advanced Energy Materials. (2013) 3, no. 8, 1062–1067, https://doi.org/10.1002/aenm.201300100, 2-s2.0-84882277682.
- 21 van de Lagemaat J., Barnes T. M., Rumbles G., Shaheen S. E., Coutts T. J., Weeks C., Levitsky I., Peltola J., and Glatkowski P., Organic solar cells with carbon nanotubes replacing In2o3: Sn as the transparent electrode, Applied Physics Letters. (2006) 88, no. 23, 233503, https://doi.org/10.1063/1.2210081, 2-s2.0-33745016422.
- 22 Angmo D. and Krebs F. C., Flexible ITO-free polymer solar cells, Journal of Applied Polymer Science. (2013) 129, no. 1, 1–14, https://doi.org/10.1002/app.38854, 2-s2.0-84876294634.
- 23 Cattin L., Bernède J. C., and Morsli M., Toward indium-free optoelectronic devices: dielectric/metal/dielectric alternative transparent conductive electrode in organic photovoltaic cells, Physica Status Solidi (A): Applications and Materials Science. (2013) 210, no. 6, 1047–1061, https://doi.org/10.1002/pssa.201228089, 2-s2.0-84879241032.
- 24 Cao W., Zheng Y., Li Z., Wrzesniewski E., Hammond W. T., and Xue J., Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode, Organic Electronics. (2012) 13, no. 11, 2221–2228, https://doi.org/10.1016/j.orgel.2012.05.047, 2-s2.0-84864818037.
- 25 Yambem S. D., Haldar A., Liao K., Dillon E. P., Barron A. R., and Curran S. A., Optimization of organic solar cells with thin film Au as anode, Solar Energy Materials and Solar Cells. (2011) 95, no. 8, 2424–2430, https://doi.org/10.1016/j.solmat.2011.04.019, 2-s2.0-79958131520.
- 26 Yambem S. D., Liao K., and Curran S. A., Flexible Ag electrode for use in organic photovoltaics, Solar Energy Materials and Solar Cells. (2011) 95, no. 11, 3060–3064, https://doi.org/10.1016/j.solmat.2011.06.033, 2-s2.0-80051550328.
- 27 Lim S., Han D., Kim H., Lee S., and Yoo S., Cu-based multilayer transparent electrodes: a low-cost alternative to ITO electrodes in organic solar cells, Solar Energy Materials and Solar Cells. (2012) 101, 170–175, https://doi.org/10.1016/j.solmat.2012.01.016, 2-s2.0-84862811702.
- 28 Ghosh D. S., Betancur R., Chen T. L., Pruneri V., and Martorell J., Semi-transparent metal electrode of CuNi as a replacement of an ITO in organic photovoltaic cells, Solar Energy Materials and Solar Cells. (2011) 95, no. 4, 1228–1231, https://doi.org/10.1016/j.solmat.2010.12.040, 2-s2.0-79951851707.
- 29 Sennett R. and Scott G., The structure of evaporated metal films and their optical properties, Journal of the Optical Society of America. (1950) 40, 203–210, https://doi.org/10.1364/JOSA.40.000203.
- 30 Kim S., Ee H., Choi W., Kwon S., Kang J., Kim Y., Kwon H., and Park H., Surface-plasmon-induced light absorption on a rough silver surface, Applied Physics Letters. (2011) 98, no. 1, 011109, https://doi.org/10.1063/1.3537812, 2-s2.0-78651323927.
- 31 Schubert S., Meiss J., Müller-Meskamp L., and Leo K., Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer, Advanced Energy Materials. (2013) 3, no. 4, 438–443, https://doi.org/10.1002/aenm.201200903, 2-s2.0-84876704776.
- 32 Schubert S., Hermenau M., Meiss J., Müller-Meskamp L., and Leo K., Oxide sandwiched metal thin-film electrodes for long-term stable organic solar cells, Advanced Functional Materials. (2012) 22, no. 23, 4993–4999, https://doi.org/10.1002/adfm.201201592, 2-s2.0-84870623429.
- 33 Wang Z., Zhang C., Gao R., Chen D., Tang S., Zhang J., Wang D., Lu X., and Hao Y., Improvement of transparent silver thin film anodes for organic solar cells with a decreased percolation threshold of silver, Solar Energy Materials and Solar Cells. (2014) 127, 193–200, https://doi.org/10.1016/j.solmat.2014.04.024.