Solutions to the Schrödinger Equation with Inversely Quadratic Yukawa Plus Inversely Quadratic Hellmann Potential Using Nikiforov-Uvarov Method
Abstract
The solutions to the Schrödinger equation with inversely quadratic Yukawa and inversely quadratic Hellmann (IQYIQH) potential for any angular momentum quantum number l have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding unnormalized eigenfunctions are obtained in terms of the Laguerre polynomials. The NU method is related to the solutions in terms of generalized Jacobi polynomials. In the NU method, the Schrödinger equation is reduced to a generalized equation of hypergeometric type using the coordinate transformation s = s(r). The equation then yields a form whose polynomial solutions are given by the well-known Rodrigues relation. With the introduction of the IQYIQH potential into the Schrödinger equation, the resultant equation is further transformed in such a way that certain polynomials with four different possible forms are obtained. Out of these forms, only one form is suitable for use in obtaining the energy eigenvalues and the corresponding eigenfunctions of the Schrödinger equation.
1. Introduction
The bound state solutions to the Schrödinger equation (SE) are only possible for some potentials of physical interest [1–5]. Quite recently, several authors have tried to solve the problem of obtaining exact or approximate solutions to the Schrödinger equation for a number of special potentials [6–10]. Some of these potentials are known to play very important roles in many fields of physics such as molecular physics, solid state, and chemical physics [8].
2. Overview of the Nikiforov-Uvarov Method
3. The Schrödinger Equation
4. Solutions to the Radial Equation
5. Discussion
6. Conclusion
The bound state solutions to the Schrödinger equation have been obtained for the inversely quadratic Yukawa and inversely quadratic Hellmann potential. Special cases of the potential are also considered and their energy eigenvalues are obtained.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.