Temperature Evolution of Cluster Structures in Ethanol
Corresponding Author
P. Golub
National Taras Shevchenko University of Kyiv, Glushkova Avenue 4, Kyiv 03187, Ukraine , kiev.ua
Search for more papers by this authorI. Doroshenko
National Taras Shevchenko University of Kyiv, Glushkova Avenue 4, Kyiv 03187, Ukraine , kiev.ua
Search for more papers by this authorV. Pogorelov
National Taras Shevchenko University of Kyiv, Glushkova Avenue 4, Kyiv 03187, Ukraine , kiev.ua
Search for more papers by this authorV. Sablinskas
Vilnius University, Sauletekio 9-3, 10222 Vilnius, Lithuania , vu.lt
Search for more papers by this authorV. Balevicius
Vilnius University, Sauletekio 9-3, 10222 Vilnius, Lithuania , vu.lt
Search for more papers by this authorJ. Ceponkus
Vilnius University, Sauletekio 9-3, 10222 Vilnius, Lithuania , vu.lt
Search for more papers by this authorCorresponding Author
P. Golub
National Taras Shevchenko University of Kyiv, Glushkova Avenue 4, Kyiv 03187, Ukraine , kiev.ua
Search for more papers by this authorI. Doroshenko
National Taras Shevchenko University of Kyiv, Glushkova Avenue 4, Kyiv 03187, Ukraine , kiev.ua
Search for more papers by this authorV. Pogorelov
National Taras Shevchenko University of Kyiv, Glushkova Avenue 4, Kyiv 03187, Ukraine , kiev.ua
Search for more papers by this authorV. Sablinskas
Vilnius University, Sauletekio 9-3, 10222 Vilnius, Lithuania , vu.lt
Search for more papers by this authorV. Balevicius
Vilnius University, Sauletekio 9-3, 10222 Vilnius, Lithuania , vu.lt
Search for more papers by this authorJ. Ceponkus
Vilnius University, Sauletekio 9-3, 10222 Vilnius, Lithuania , vu.lt
Search for more papers by this authorAbstract
The dependence of FTIR spectrum of pure ethanol on the temperature was investigated. The measurements were performed for frozen (the minimum temperature −180°C) and liquid ethanol (the maximum temperature 40°C). All changes in IR spectrum of ethanol during gradual warming were detected and analyzed. On the bases of preset observations, the conclusions concerning the evolution of cluster structures in ethanol during transition from solid (frozen) state to liquid state were made.
Supporting Information
Filename | Description |
---|---|
dpi3473294-sup-0001-f1.opj1.4 MB | 473294.item.1.opj Dataset Item 1 (Spectrum). FTIR spectrum of ethanol at temperature 40°C. |
dpi3473294-sup-0002-f2.opj1.4 MB | 473294.item.2.opj Dataset Item 2 (Spectrum). FTIR spectrum of ethanol at temperature 20°C. |
dpi3473294-sup-0003-f3.opj1.4 MB | 473294.item.3.opj Dataset Item 3 (Spectrum). FTIR spectrum of ethanol at temperature −80°C. |
dpi3473294-sup-0004-f4.opj1.4 MB | 473294.item.4.opj Dataset Item 4 (Spectrum). FTIR spectrum of ethanol at temperature −120°C. |
dpi3473294-sup-0005-f5.opj1.4 MB | 473294.item.5.opj Dataset Item 5 (Spectrum). FTIR spectrum of ethanol at temperature −180°C. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Boyd S. L. and Boyd R. J., A density functional study of methanol clusters, Journal of Chemical Theory and Computation. (2007) 3, no. 1, 54–61, 2-s2.0-34249108440, https://doi.org/10.1021/ct6002912.
- 2 Doroshenko I. Yu., Lizengevych O. I., Pogorelov V. E., and Savransky L. I., Associates of methanol molecules: quantum-chemical calculations of structure and vibrational spectra, Ukrainian Journal of Physics. (2004) 49, no. 6, 540–544.
- 3 Ludwig R., Isotopic quantum effects in liquid methanol, ChemPhysChem. (2005) 6, no. 7, 1376–1380, 2-s2.0-22444435305, https://doi.org/10.1002/cphc.200400664.
- 4 Bako I., Jedlovzky P., and Palinkas G., Molecular clusters in liquid methanol: a reverse Monte Carlo study, Journal of Molecular Liquids. (2000) 87, no. 2, 243–254.
- 5 Kashtanov S., Augustson A., Rubensson J. E., Nordgren J., Ågren H., Guo J. H., and Luo Y., Chemical and electronic structures of liquid methanol from X-ray emission spectroscopy and density functional theory, Physical Review B. (2005) 71, no. 10, 1–8, 2-s2.0-20344369545, https://doi.org/10.1103/PhysRevB.71.104205.
- 6 Tomsic M. and Jamnik A., Structural properties of pure simple alcohols from ethanol, propanol, butanol, pentanol, to hexanol: comparing Monte Carlo simulations with experimental SAXS data, Journal of Physical Chemistry B. (2007) 111, no. 7, 1738–1751.
- 7 Vrhovsek A., Gereben O., Jamnik A., and Pusztai L., Hydrogen bonding and molecular aggregates in liquid methanol, ethanol, and 1-propanol, Journal of Physical Chemistry B. (2011) 115, no. 46, 13473–13488.
- 8 Hu Y. J., Fu H. B., and Bernstein E. R., Infrared plus vacuum ultraviolet spectroscopy of neutral and ionic ethanol monomers and clusters, Journal of Chemical Physics. (2006) 125, 154305, https://doi.org/10.1063/1.2357952.
- 9 Benmore C. J. and Loh Y. L., The structure of liquid ethanol: a neutron diffraction and molecular dynamics study, Journal of Chemical Physics. (2000) 112, no. 13, 5877–5883, 2-s2.0-0346686746.
- 10 Lehtola J., Hakala M., and Hämäläinen K., Structure of liquid linear alcohols, Journal of Physical Chemistry B. (2010) 114, no. 19, 6426–6436, 2-s2.0-77952493455, https://doi.org/10.1021/jp909894y.
- 11 Svishchev I. M. and Kusalik P. G., Structure in liquid methanol from spatial distribution functions, The Journal of Chemical Physics. (1994) 100, no. 7, 5165–5171, 2-s2.0-36449009457.
- 12 Pitsevich G. A., Doroshenko I. Y., Pogorelov V. Y., Shablinskas V., and Balevichus V., Structure and vibrational spectra of gauche- and trans-conformers of ethanol: Nonempirical anharmonic calculations and FTIR spectra in argon matrices, Low Temperature Physics. (2013) 39, article 389, https://doi.org/10.1063/1.4801995.
- 13 Roeges N. P. G., A Guide To the Complete Interpretation of the Infrared Spectra of Organic Structures, 1994, John Wiley & Sons, New York, NY, USA.
- 14 Coussan S., Bouteiller Y., Perchard J. P., and Zheng W. Q., Rotational isomerism of ethanol and matrix isolation infrared spectroscopy, Journal of Physical Chemistry A. (1998) 102, no. 29, 5789–5793.
- 15 Barnes A. J. and Hallam H. E., Infra-red cryogenic studies. Part 5. Ethanol and ethanol-d argon matrices, Transactions of the Faraday Society. (1970) 66, 1932–1940, 2-s2.0-0011700154, https://doi.org/10.1039/TF9706601932.
- 16 Dunig J. R., Deeb H., Darkhalil I. D., Klassen J. J., Gounev T. K., and Ganguly A., The r0 structural parameters, conformational stability, barriers to internal rotation, and vibrational assignments for trans and gauche ethanol, Journal of Molecular Structure. (2011) 985, no. 2-3, 202–210.
- 17 Pitsevich G., Doroshenko I., Pogorelov V., Shablinskas V., Balevichus V., and Kozlovskaya N., Nonempiric anharmonic computations of IR spectra of ethanol conformers in B3LYP/-pVQZ approximation (stretch-vibrations), The American Journal of Chemistry. (2012) 2, no. 4, 218–227.