Existence and Uniqueness of Positive Solution for a Fractional Dirichlet Problem with Combined Nonlinear Effects in Bounded Domains
Corresponding Author
Imed Bachar
Mathematics Department, College of Sciences , King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia ksu.edu.sa
Search for more papers by this authorHabib Mâagli
Mathematics Department, College of Sciences and Arts, King Abdulaziz University, Rabigh Campus, P.O. Box 344, Rabigh 21911, Saudi Arabia kau.edu.sa
Search for more papers by this authorCorresponding Author
Imed Bachar
Mathematics Department, College of Sciences , King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia ksu.edu.sa
Search for more papers by this authorHabib Mâagli
Mathematics Department, College of Sciences and Arts, King Abdulaziz University, Rabigh Campus, P.O. Box 344, Rabigh 21911, Saudi Arabia kau.edu.sa
Search for more papers by this authorAbstract
We prove the existence and uniqueness of a positive continuous solution to the following singular semilinear fractional Dirichlet problem , in D limx→z∈∂D(δ(x)) 1−(α/2)u(x) = 0, where 0 < α < 2, σ1, σ2 ∈ (−1,1), D is a bounded C1,1-domain in ℝn, n ≥ 2, and δ(x) denotes the Euclidian distance from x to the boundary of D. The nonnegative weight functions a1, a2 are required to satisfy certain hypotheses related to the Karamata class. We also investigate the global behavior of such solution.
References
- 1
Landkof N. S., Foundations of Modern Potential Theory, 1972, Springer, New York, NY, USA, MR0350027.
10.1007/978-3-642-65183-0 Google Scholar
- 2 Stein E. M., Singular integrals and differentiability properties of functions, 1970, 30, Princeton University Press, Princeton, NJ, USA, Princeton Mathematical Series, MR0290095.
- 3 Applebaum D., Lévy Processes and Stochastic Calculus, 2009, 116, 2nd edition, Cambridge University Press, Cambridge, UK, Cambridge Studies in Advanced Mathematics, https://doi.org/10.1017/CBO9780511809781, MR2512800.
- 4 Bertoin J., Lévy Processes, 1996, 121, Cambridge University Press, Cambridge, UK, Cambridge Tracts in Mathematics, MR1406564.
- 5 Valdinoci E., From the long jump random walk to the fractional Laplacian, Boletín de la Sociedad Española de Matemática Aplicada. (2009) no. 49, 33–44, MR2584076, ZBL1242.60047.
- 6 Abdelouhab L., Bona J. L., Felland M., and Saut J.-C., Nonlocal models for nonlinear, dispersive waves, Physica D. (1989) 40, no. 3, 360–392, https://doi.org/10.1016/0167-2789(89)90050-X, MR1044731, ZBL0699.35227.
- 7 Bogdan K. and Byczkowski T., Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains, Studia Mathematica. (1999) 133, no. 1, 53–92, MR1671973.
- 8
Bogdan K., Representation of α-harmonic functions in Lipschitz domains, Hiroshima Mathematical Journal. (1999) 29, no. 2, 227–243, MR1704245.
10.32917/hmj/1206125005 Google Scholar
- 9 Caffarelli L. and Silvestre L., An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations. (2007) 32, no. 7-9, 1245–1260, https://doi.org/10.1080/03605300600987306, MR2354493, ZBL1143.26002.
- 10 Elgart A. and Schlein B., Mean field dynamics of boson stars, Communications on Pure and Applied Mathematics. (2007) 60, no. 4, 500–545, https://doi.org/10.1002/cpa.20134, MR2290709, ZBL1113.81032.
- 11 Fröhlich J. and Lenzmann E., Blowup for nonlinear wave equations describing boson stars, Communications on Pure and Applied Mathematics. (2007) 60, no. 11, 1691–1705, https://doi.org/10.1002/cpa.20186, MR2349352, ZBL1135.35011.
- 12
Caffarelli L. A., Further regularity for the Signorini problem, Communications in Partial Differential Equations. (1979) 4, no. 9, 1067–1075, https://doi.org/10.1080/03605307908820119, MR542512, ZBL0427.35019.
10.1080/03605307908820119 Google Scholar
- 13 Signorini A., Questioni di elasticità non linearizzata e semilinearizzata, 1959, 18, 95–139, MR0118021, ZBL0091.38006.
- 14 Caffarelli L. A. and Vasseur A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Mathematics. (2010) 171, no. 3, 1903–1930, https://doi.org/10.4007/annals.2010.171.1903, MR2680400, ZBL1204.35063.
- 15 Athanasopoulos I., Caffarelli L. A., and Salsa S., The structure of the free boundary for lower dimensional obstacle problems, American Journal of Mathematics. (2008) 130, no. 2, 485–498, https://doi.org/10.1353/ajm.2008.0016, MR2405165, ZBL1185.35339.
- 16 Caffarelli L. A., Salsa S., and Silvestre L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Inventiones Mathematicae. (2008) 171, no. 2, 425–461, https://doi.org/10.1007/s00222-007-0086-6, MR2367025, ZBL1148.35097.
- 17 Kassmann M., A priori estimates for integro-differential operators with measurable kernels, Calculus of Variations and Partial Differential Equations. (2009) 34, no. 1, 1–21, https://doi.org/10.1007/s00526-008-0173-6, MR2448308, ZBL1158.35019.
- 18 Silvestre L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications on Pure and Applied Mathematics. (2007) 60, no. 1, 67–112, https://doi.org/10.1002/cpa.20153, MR2270163, ZBL1141.49035.
- 19 Abe S. and Thurner S., Anomalous diffusion in view of Einstein′s 1905 theory of Brownian motion, Physica A. (2005) 356, no. 2-4, 403–407.
- 20 Jara M., Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Communications on Pure and Applied Mathematics. (2009) 62, no. 2, 198–214, https://doi.org/10.1002/cpa.20253, MR2468608, ZBL1153.82015.
- 21 Mellet A., Mischler S., and Mouhot C., Fractional diffusion limit for collisional kinetic equations, Archive for Rational Mechanics and Analysis. (2011) 199, no. 2, 493–525, https://doi.org/10.1007/s00205-010-0354-2, MR2763032, ZBL1242.76304.
- 22 Vlahos L., Isliker H., Kominis Y., and Hizonidis K., T. Bountis, Normal and anomalous diffusion: a tutorial, Order and Chaos, 2008, 10, Patras University Press, Patras, Greece.
- 23 Weitzner H. and Zaslavsky G. M., Some applications of fractional equations. Chaotic transport and complexity in classical and quantum dynamics, Communications in Nonlinear Science and Numerical Simulation. (2003) 8, no. 3-4, 273–281, https://doi.org/10.1016/S1007-5704(03)00049-2, MR2007006, ZBL1041.35073.
- 24 Vazquez J. L., Nonlinear diffusion with fractional Laplacian operators, Non-Linear Partial Differential Equations. (2012) 7, 271–298.
- 25 Di Nezza E., Palatucci G., and Valdinoci E., Hitchhiker′s guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques. (2012) 136, no. 5, 521–573, https://doi.org/10.1016/j.bulsci.2011.12.004, MR2944369, ZBL1252.46023.
- 26 Chemmam R., Mâagli H., and Masmoudi S., On a new Kato class and positive solutions of Dirichlet problems for the fractional Laplacian in bounded domains, Nonlinear Analysis. Theory, Methods & Applications. (2011) 74, no. 5, 1555–1576, https://doi.org/10.1016/j.na.2010.10.027, MR2764358, ZBL1209.31005.
- 27 Mâagli H. and Zribi M., On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of ℝn, Positivity. (2005) 9, no. 4, 667–686, https://doi.org/10.1007/s11117-005-2782-z, MR2193183, ZBL1131.35335.
- 28 Chemmam R., Mâagli H., and Masmoudi S., Boundary behavior of positive solutions of a semilinear fractional Dirichlet problem, Journal of Abstract Differential Equations and Applications. (2012) 3, no. 2, 75–90, MR2988965.
- 29 Cîrstea F. C. and Rădulescu V., Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach, Asymptotic Analysis. (2006) 46, no. 3-4, 275–298, MR2215886.
- 30
Marić V., Regular Variation and Differential Equations, 2000, 1726, Springer, Berlin, Germany, Lecture Notes in Mathematics, https://doi.org/10.1007/BFb0103952, MR1753584.
10.1007/BFb0103952 Google Scholar
- 31
Seneta E., Regularly Varying Functions, 1976, 508, Springer, Berlin, Germany, MR0453936.
10.1007/BFb0079658 Google Scholar
- 32 Gontara S., Mâagli H., Masmoudi S., and Turki S., Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problem, Journal of Mathematical Analysis and Applications. (2010) 369, no. 2, 719–729, https://doi.org/10.1016/j.jmaa.2010.04.008, MR2651717, ZBL1196.35109.
- 33 Mâagli H., Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Analysis. Theory, Methods & Applications. (2011) 74, no. 9, 2941–2947, https://doi.org/10.1016/j.na.2011.01.011, MR2785389, ZBL1213.31006.
- 34 Ambrosetti A., Brezis H., and Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, Journal of Functional Analysis. (1994) 122, no. 2, 519–543, https://doi.org/10.1006/jfan.1994.1078, MR1276168, ZBL0805.35028.
- 35 Boccardo L., A Dirichlet problem with singular and supercritical nonlinearities, Nonlinear Analysis. Theory, Methods & Applications. (2012) 75, no. 12, 4436–4440, https://doi.org/10.1016/j.na.2011.09.026, MR2927112, ZBL1250.35112.
- 36 Chemmam R., Mâagli H., Masmoudi S., and Zribi M., Combined effects in nonlinear singular elliptic problems in a bounded domain, Advances in Nonlinear Analysis. (2012) 1, no. 4, 301–318, MR3037123.
- 37 Rădulescu V. and Repovš D., Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Analysis. Theory, Methods & Applications. (2012) 75, no. 3, 1524–1530, https://doi.org/10.1016/j.na.2011.01.037, MR2861354, ZBL1237.35043.
- 38 Yijing S. and Shujie L., Some remarks on a superlinear-singular problem: estimates of λ*, Nonlinear Analysis. Theory, Methods & Applications. (2008) 69, no. 8, 2636–2650, https://doi.org/10.1016/j.na.2007.08.037, MR2446359.
- 39 Sun Y., Wu S., and Long Y., Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, Journal of Differential Equations. (2001) 176, no. 2, 511–531, https://doi.org/10.1006/jdeq.2000.3973, MR1866285, ZBL1109.35344.
- 40 Chen Z.-Q. and Song R., Estimates on Green functions and Poisson kernels for symmetric stable processes, Mathematische Annalen. (1998) 312, no. 3, 465–501, https://doi.org/10.1007/s002080050232, MR1654824, ZBL0918.60068.
- 41 Kulczycki T., Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics. (1997) 17, 339–364, MR1490808, ZBL0903.60063.