Time Fractional Schrodinger Equation Revisited
Abstract
The time fractional Schrodinger equation (TFSE) for a nonrelativistic particle is derived on the basis of the Feynman path integral method by extending it initially to the case of a “free particle” obeying fractional dynamics, obtained by replacing the integer order derivatives with respect to time by those of fractional order. The equations of motion contain quantities which have “fractional” dimensions, chosen such that the “energy” has the correct dimension [ML2/T2]. The action S is defined as a fractional time integral of the Lagrangian, and a “fractional Planck constant” is introduced. The TFSE corresponds to a “subdiffusion” equation with an imaginary fractional diffusion constant and reproduces the regular Schrodinger equation in the limit of integer order. The present work corrects a number of errors in Naber’s work. The correct continuity equation for the probability density is derived and a Green function solution for the case of a “free particle” is obtained. The total probability for a “free” particle is shown to go to zero in the limit of infinite time, in contrast with Naber’s result of a total probability greater than unity. A generalization to the case of a particle moving in a potential is also given.
1. Introduction
There has been an explosive research output in recent years in the application of methods of fractional calculus [1–13] to the study of quantum phenomena [14–42]. The well-known Schrodinger equation with a first-order derivative in time and second-order derivatives in space coordinates was given by Schrodinger as an Ansatz. The Schrodinger equation has been generalized to (i) a space fractional Schrodinger equation involving noninteger order space derivatives but retaining first-order time derivative [14–18], (ii) a time fractional Schrodinger equation involving non-integer order time derivative but retaining the second-order space derivatives [19], or (iii) more general fractional Schrodinger equation where both time and space derivatives are of non-integer order [20–26]. The fractional Schrodinger equation has also been obtained by using a fractional generalization of the Laplacian operator [20] and by using a fractional variation principle and a fractional Klein-Gordon equation [36]. In all these cases the fractional derivatives employed have been the regular fractional derivatives of the Riemann-Liouville type or the Caputo type (generally used in physical applications with initial conditions) which are both nonlocal in nature. The fractional derivative which is nonlocal by definition can be made “local” by a limiting process as shown by Kolwankar and Gangal [41]. Highly irregular and nowhere differentiable functions can be analyzed locally using these local fractional derivatives. The Heisenberg principle in the fractional context has been investigated using local fractional Fourier analysis [42].
The Schrodinger equation for a free particle has the appearance of a diffusion equation with an imaginary diffusion coefficient. This suggests a method of deriving the Schrodinger equation as has been done using the Feynman path integral technique [43–45] based on the Gaussian probability distribution in the space of all possible paths. In other words, the classical Brownian motion leads to the Schrodinger equation in quantum mechanics. As far as deriving the fractional Schrodinger equation is concerned, the path integral approach for the Brownian-like paths for the Levy stable processes which leads to the classical space fractional diffusion equation has been extended to the Levy-like quantum paths leading to the space fractional Schrodinger equation (SFSE) in the seminal papers of Laskin [14–18]. It may be noted that in this case, the time derivative is still the integer first-order derivative; only the space part is of fractional order. The SFSE still retains the Markovian character and other fundamental aspects such as the Hermiticity of the Hamilton operator. Parity conservation and the current density have been explored in the space fractional quantum mechanics in terms of the Riesz fractional derivative. Applications of SFSE cover the dynamics of a free particle, particle in an infinite potential well, fractional Bohr atom, and the quantum fractional oscillator. Thus the space fractional Schrodinger equation appears to have been well established [18]. This theory has been further generalized recently within the frame work of tempered ultradistributions [39]. Thus the theory of SFSE can be considered fully established from the point of view of the Feynman path integral technique.
The fractional time derivative was introduced into the Schrodinger equation by Naber [19] by simply replacing the first-order time derivative by a derivative of non-integer order and retaining the second-order space derivatives intact. The resulting equation is referred to as the time fractional Schrodinger equation (TFSE). He did not derive the TFSE using the path integral or any other method. Naber carried out the time fractional modification to the Schrodinger equation in analogy with time fractional diffusion equation [19] but included the imaginary number i raised to a fractional power (the fractional degree being the same as the fractional order of the time derivative), implying a sort of the Wick rotation. In Naber’s opinion [19], the TFSE is equivalent to the usual Schrodinger equation, but with a time-dependent Hamiltonian. He obtained the solutions for a free particle and a particle in a potential well. A lot of subsequent work has been done on the TFSE, mostly based on Naber’s work [21–23, 28], including its generalization into space-time fractional quantum dynamics by including non-integer order derivatives in both time and space. Yet some basic questions have not been addressed. It has been observed that TFSE describes non-Markovian evolution and that the Green function in the form of the Mittag-Leffler function does not satisfy Stone’s theorem on one-parameter unitary groups and the semiclassical approximation in terms of the classical action is not defined [31]. There has been no derivation of TFSE on a basis similar to that of SFSE and it is the purpose of the present paper to rectify this lacuna. Since the path integral method of deriving the space fractional part of the Schrodinger equation is well established, the present paper concentrates only on deriving the time fractional Schrodinger equation from the Feynman path integral approach, leading to the time fractional Schrodinger equation as given by Naber. It may be pointed out that some results of Naber, such as the total probability being greater than unity, are difficult to understand physically. Moreover, several major errors in Naber’s paper have gone unnoticed and in fact have been repeated by workers who have followed his work. Furthermore, some of these authors have introduced errors of their own. Since many of the conclusions in Naber’s paper are based on derivations which include these errors, it calls for a reexamination of Naber’s generalization to the time fractional Schrodinger equation.
The present paper derives the time fractional Schrodinger equation using the Feynman path integral technique. It concentrates on the time fractional part only and not on the space fractional part as the theory of the latter has been well established in the works of Laskin [14–18]. Furthermore, the paper considers only the Caputo-type nonlocal fractional derivatives and not the local fractional derivatives discussed earlier. The paper starts from a generalization of the classical dynamics into fractional dynamics of a free particle and then adapting the Feynman technique derives the correct equations for TFSE. It is demonstrated that Naber’s result of probability being greater than unity is spurious and is a result of the ad hoc raising of the imaginary number i to a fractional power. The correct continuity equation for the probability density is also derived. The paper concludes with some new results.
2. Feynman Path Integral Method
These considerations will be generalized for a particle obeying fractional dynamics. It can then be extended to the case of a particle in a potential field by including the potential term and making appropriate changes as will be described later.
3. Fractional Dynamics of a Free Particle
4. Time Fractional Schrodinger Equation for a Free Particle
The dimensions of SI are the same as that of the regular action, namely, [ML2/T], but that of SII is [ML2/T2−α/2]. In the Newtonian limit α → 2, SII→ regular action. These dimensional considerations have to be kept in mind in generalizing the Feynman method. In particular, if the choice from (29) is made, then a “fractional Planck constant” ℏf with appropriate dimensions must be introduced in order to render the argument of the exponential in (7) dimensionless.
It should be noted that since α ≤ 2, with α = 2 being the limiting case, the order of the time fractional derivative is ≤1 in both (44) and (47) and cannot exceed 1. This means the time fractional Schrodinger equation as derived from the path integral method always corresponds to the “subdiffusion” case in contrast to the case where the TFSE is obtained by a simple replacement of the first-order time derivative by a fractional order derivative [19]. Furthermore, the order α/2 of the fractional derivative corresponds to the first-order regular derivative as has been used above in Section 3. Thus it appears that the second method of defining the action leading to (47) is the natural way to generalize to TFSE. In appearance also it is as if the equation has been obtained by replacing all quantities in the Schrodinger equation by an equivalent fractional quantity, except the space derivative. Furthermore, (44) becomes a fractional order integro-differential equation when α < 1 and no longer just a fractional order differential equation. Because of these reasons, it is considered the method of choice to use (47) as the TFSE derived from the path integral method and no further reference will be made to (44).
The coefficient of the space derivative term in (47) has the dimension [L2/Tα/2], corresponding to the fractional diffusion coefficient. Thus (47) can be considered a time fractional diffusion equation with an imaginary fractional diffusion coefficient, just as (48), the regular Schrodinger equation, can be considered to be a diffusion equation with an imaginary diffusion coefficient. Thus all the mathematical machinery of time fractional diffusion theory [5, 50–59] can be imported advantageously.
Equation (49) can be solved by a combination of the Fourier and Laplace transform methods [52–54].
5. Probability Current and the Continuity Equation
6. Solution for TFSE for a Free Particle
The solution for the TFSE for a free particle under the conditions
ψ(x, 0) = ψ0(x); ψ(x, t) → 0, |x | → ∞, t > 0 is available in the literature but considered here for purposes of obtaining the Green function for the TFSE.

The Green function for regular diffusion describes a probability density, whereas the corresponding Green function for the Schrodinger equation is the propagator, which describes the probability amplitude for the particle to propagate from xa at ta to xb at tb. In exactly the same way, the Green function for time fractional diffusion describes a probability density, whereas the Green function in (68) is the fractional propagator and gives the probability amplitude. Of particular interest is the Fourier component of the wave function in (62) in connection with the total probability as t → ∞; the case discussed by Naber [19] and will be discussed in the next section.
7. Comments about Some Results in Naber’s Work [19]
This section draws attention to some errors in Naber’s paper which have gone unnoticed and have been reproduced repeatedly. Naber’s equations will be referred to by their number and a prefix N. Naber explicitly states that he uses the Caputo derivative, which has been defined earlier in (25) in this paper. Although Naber does not give the explicit definition of the Caputo fractional derivative in his paper [19], it can be inferred from (NA.3) given in the appendix to his paper.
The incorrect identity has been used by Naber to derive an equation for the probability current, which is obviously incorrect. Unfortunately, the incorrect identity, as given by Naber, in (72) has been repeatedly used in the literature. The correct equation for the probability current has been given in this paper in (59), which reduces to the standard continuity equation for the probability current in regular quantum mechanics [49].
The question naturally arises why there is this difference in the two results, both of which are concerned with the Mittag-Leffler functions with complex arguments. The reason appears to be that in Naber’s case, the pole occurs at s0 = σ1/νi, whereas in the present paper, the pole occurs (using the same notation as Naber) at s0 = σ1/ν(−i) 1/ν. The simple i in Naber’s case leads to the purely oscillatory solution and hence to the result of the probability being greater than unity. In our paper the imaginary number raised to the fractional power leads to the exponentially decaying solution and hence leads to the correct limit when t → ∞, namely, zero total probability. Naber’s result is a direct consequence of his choice to raise the power of the imaginary number i to the fractional power, so as to incorporate a Wick rotation. However, as had been indicated earlier, this imaginary number cannot be arbitrarily altered as it is connected with the phase factor iS/ℏ in the Feynman propagator. If it is necessary to include a Wick rotation, the power of i should be changed to ν + 1 in Naber’s equation (N9) instead of just ν. If this is done, the total probability would properly →0 in the limit t → ∞. If this is done, then the TFSE can be interpreted as the analytic continuation of the fractional diffusion equation, just as the regular Schrodinger equation can be considered as the analytic continuation of the regular diffusion equation.
8. TFSE for a Particle in a Potential Field
9. Discussion and Conclusions
The TFSE has been derived using the Feynman path integral technique for a nonrelativistic particle. As expected the TFSE looks like a time fractional diffusion equation with an imaginary fractional diffusion constant but pertains to the realm of subdiffusion only, in contrast to Naber’s generalization which includes superdiffusion as well. This is understandable because the case considered in this paper pertains to the nonrelativistic case. Relativistic considerations would have to be included for the superdiffusion case, which would lead to the Klein-Gordon equation in the integer order limit. In adapting the Feynman method, it is shown that it is preferable to introduce the action S as a fractional time integral of the Lagrangian and that it is necessary to introduce a “fractional Planck constant.” In the limit of integer order, the regular action S, the regular Schrodinger equation, and the regular Planck constant are all recovered. It may be of interest to note that there is a fractional Planck constant implied in Naber’s work also, although it is not explicitly so stated. His equations are rendered nondimensional by using the Planck units of mass, length, and time and then generalized to fractional derivatives after including a Wick rotation. This implies a change of variable of time t → it so that the imaginary number is raised to the same power as the order of the fractional time derivative involved. However, the Planck units may not be the appropriate quantities as the equations involve quantities of fractional dimension and the equations must be made nondimensional after the generalization to fractional derivatives and not before. A fractional Planck constant does show up in Naber’s treatment as well, as the ratio of masses m/Mp [31, 32].
A number of errors in Naber’s work have been corrected. The correct continuity equation for the probability current is derived and the Green function solution for a free particle is given. The Green function is given in terms of a special type of function, the M-Wright function, which is used extensively in studies of time fractional subdiffusion studies. In the context of time fractional diffusion, the M-Wright function is a probability density function in time, which is non-Markovian and goes over to the Gaussian in the nonfractional limiting case. In the context of TFSE, the M-Wright function gives the propagator, which is a probability amplitude. Probability considerations are accounted for by the usual process of squaring of the amplitude. In particular, it is shown that Naber’s result that the total probability is greater than unity in the long-time limit is a spurious result arising out of the operation of arbitrarily raising of the imaginary number i to the power of the same degree as the fractional time derivative invoking a Wick rotation. It is shown that such arbitrary change of the imaginary number cannot be carried out as the imaginary number i is connected with the phase of the action S in the path integral contribution. However, if we desired to consider a Wick rotation, it should be included as an additional increase of the index of the power of the imaginary number. The TFSE for a particle moving in a potential field is also derived. Furthermore, it is suggested that even in studies of fractional classical mechanics, such as those using variational methods, the action integral be expressed as a time fractional integral of the Lagrangian. Further extensions including the solutions to particle subject to different potentials are underway.