Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions
Catherine Tomaro-Duchesneau
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorShyamali Saha
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Faculty of Dentistry, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorMeenakshi Malhotra
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorImen Kahouli
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Department of Experimental Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorCorresponding Author
Satya Prakash
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorCatherine Tomaro-Duchesneau
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorShyamali Saha
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Faculty of Dentistry, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorMeenakshi Malhotra
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorImen Kahouli
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Department of Experimental Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorCorresponding Author
Satya Prakash
Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4, mcgill.ca
Search for more papers by this authorAbstract
Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed.
References
- 1 Wischke C. and Schwendeman S. P., Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles, International Journal of Pharmaceutics. (2008) 364, no. 2, 298–327, 2-s2.0-55649104973, https://doi.org/10.1016/j.ijpharm.2008.04.042.
- 2 Prakash S. and Chang T. M. S., In vitro and in vivo uric acid lowering by artificial cells containing microencapsulated genetically engineered E. coli DH5 cells, International Journal of Artificial Organs. (2000) 23, no. 7, 429–435, 2-s2.0-0033898773.
- 3 Prakash S. and Chang T. M. S., Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats, Nature Medicine. (1996) 2, no. 8, 883–887, 2-s2.0-0029847820, https://doi.org/10.1038/nm0896-883.
- 4 Wang M. Y., Yu Y. T., and Chang T. M. S., New method for preparing more stable microcapsules for the entrapment of genetically engineered cells, Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. (2005) 33, no. 3, 257–269, 2-s2.0-23944509839, https://doi.org/10.1081/BIO-200066606.
- 5
Prakash S.,
Coussa R.,
Martoni C.,
Bhathena J., and
Urbanska A. M., Oral microencapsulated live Saccharomyces cerevisiae cells for use in renal failure uremia: preparation and in vivo analysis, Journal of Biomedicine and Biotechnology. (2010) 2010, 2-s2.0-77956740064, https://doi.org/10.1155/2010/620827, 620827.
10.1155/2010/620827 Google Scholar
- 6 Lin J., Yu W., Liu X., Xie H., Wang W., and Ma X., In Vitro and in vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells, Journal of Bioscience and Bioengineering. (2008) 105, no. 6, 660–665, 2-s2.0-47149098240, https://doi.org/10.1263/jbb.105.660.
- 7 Urbanska A. M., Bhathena J., and Prakash S., Live encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral delivery: preparation and in vitro analysis of alginate-chitosan microcapsules, Canadian Journal of Physiology and Pharmacology. (2007) 85, no. 9, 884–893, 2-s2.0-36549070569, https://doi.org/10.1139/Y07-057.
- 8 Chow K. M., Liu Z. C., Prakash S., and Chang T. M. S., Free and microencapsulated Lactobacillus and effects of metabolic induction on urea removal, Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. (2003) 31, no. 4, 425–434, 2-s2.0-0344442336, https://doi.org/10.1081/BIO-120025412.
- 9 Garofalo F. A., Eng M., and Chang T. M. S., Immobilization of P. Pictorum in open pore agar, alginate and polylysine-alginate microcapsules for serum cholesterol depletion, Biomaterials, Artificial Cells, and Artificial Organs. (1989) 17, no. 3, 271–289, 2-s2.0-0024854007.
- 10
Jones M. L.,
Chen H.,
Ouyang W.,
Metz T., and
Prakash S., Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol, Journal of Biomedicine and Biotechnology. (2004) 2004, no. 1, 61–69, 2-s2.0-3042807038, https://doi.org/10.1155/S1110724304307011.
10.1155/S1110724304307011 Google Scholar
- 11 Bhathena J., Martoni C., Kulamarva A., Urbanska A. M., Malhotra M., and Prakash S., Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters, Journal of Medicinal Food. (2009) 12, no. 2, 310–319, 2-s2.0-67649514008, https://doi.org/10.1089/jmf.2008.0166.
- 12 Martoni C., Bhathena J., Urbanska A. M., and Prakash S., Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract, Applied Microbiology and Biotechnology. (2008) 81, no. 2, 225–233, 2-s2.0-55649109066, https://doi.org/10.1007/s00253-008-1642-8.
- 13 Jones M. L., Martoni C. J., Parent M., and Prakash S., Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB, 30243 yoghurt formulation in hypercholesterolaemic adults, The British Journal of Nutrition. (2012) 107, no. 10, 1505–1513.
- 14 Tomaro-Duchesneau C., Saha S., Malhotra M., Coussa-Charley M., Kahouli I., Jones M. L., Labbe A., and Prakash S., Probiotic ferulic acid esterase active Lactobacillus fermentum NCIMB, 5221 APA microcapsules for oral delivery: preparation and in vitro characterization, Pharmaceuticals. (2012) 5, no. 2, 236–248, https://doi.org/10.3390/ph5020236.
- 15 Bhathena J., Tomaro-Duchesneau C., Martoni C., Malhotra M., Kulamarva A., Urbanska A. M., Paul A., and Prakash S., Effect of orally administered microencapsulated FA-producing L. fermentum on markers of metabolic syndrome: an in vivo analysis, Journal of Diabetes & Metabolism. (2012) 2, article 009.
- 16 Urbanska A. M., Bhathena J., Martoni C., and Prakash S., Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+) Mice, Digestive Diseases and Sciences. (2009) 54, no. 2, 264–273, 2-s2.0-59449099382, https://doi.org/10.1007/s10620-008-0363-2.
- 17
Urbanska A.,
Paul A.,
Bhathena J., and
Prakash S., Suppression of tumorigenesis: modulation of inflammatory cytokines by oral administration of microencapsulated probiotic yogurt formulation, International Journal of Inflammation. (2010) 2010, 894972.
10.4061/2010/894972 Google Scholar
- 18 Lee K. Y. and Heo T. R., Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution, Applied and Environmental Microbiology. (2000) 66, no. 2, 869–873, 2-s2.0-0033981046, https://doi.org/10.1128/AEM.66.2.869-873.2000.
- 19 Hansen L. T., Allan-Wojtas P. M., Jin Y. L., and Paulson A. T., Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions, Food Microbiology. (2002) 19, no. 1, 35–45, 2-s2.0-0036486449, https://doi.org/10.1006/fmic.2001.0452.
- 20 Ruan X., Shi H., Xia G., Xiao Y., Dong J., Ming F., and Wang S., Encapsulated Bifidobacteria reduced bacterial translocation in rats following hemorrhagic shock and resuscitation, Nutrition. (2007) 23, no. 10, 754–761, 2-s2.0-34548636189, https://doi.org/10.1016/j.nut.2007.07.002.
- 21 Fritzen-Freire C. B., Prudencio E. S., Amboni R. D. M. C., Pinto S. S., Negrao-Murakami A. N., and Murakami F. S., Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics, Food Research International. (2012) 45, no. 1, 306–312, https://doi.org/10.1016/j.foodres.2011.09.020.
- 22 Lim F. and Sun A. M., Microencapsulated islets as bioartifical endocrine pancreas, Science. (1980) 210, no. 4472, 908–910, 2-s2.0-0019225745.
- 23 O′Shea G. M., Goosen M. F. A., and Sun A. M., Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane, Biochimica et Biophysica Acta. (1984) 804, no. 1, 133–136, 2-s2.0-0021768759.
- 24 Darguy S. and Reach G., Immunoisolation of pancreatic B cells by microencapsulation, Diabetologia. (1985) 28, no. 10, 776–780, 2-s2.0-0022351250.
- 25 Kobayashi T., Aomatsu Y., Iwata H., Kin T., Kanehiro H., Hisanaga M., Ko S., Nagao M., and Nakajima Y., Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression, Transplantation. (2003) 75, no. 5, 619–625, 2-s2.0-0037444016, https://doi.org/10.1097/01.TP.0000053749.36365.7E.
- 26 Omer A., Duvivier-Kali V. F., Trivedi N., Wilmot K., Bonner-Weir S., and Weir G. C., Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice, Diabetes. (2003) 52, no. 1, 69–75, 2-s2.0-0037222059, https://doi.org/10.2337/diabetes.52.1.69.
- 27 Abalovich A. G., Bacqué M. C., Grana D., and Milei J., Pig pancreatic islet transplantation into spontaneously diabetic dogs, Transplantation Proceedings. (2009) 41, no. 1, 328–330, 2-s2.0-60649100255, https://doi.org/10.1016/j.transproceed.2008.08.159.
- 28 Tuch B. E., Keogh G. W., Williams L. J., Wu W., Foster J. L., Vaithilingam V., and Philips R., Safety and viability of microencapsulated human islets transplanted into diabetic humans, Diabetes Care. (2009) 32, no. 10, 1887–1889, 2-s2.0-70349667312, https://doi.org/10.2337/dc09-0744.
- 29 Elliott R. B., Escobar L., Tan P. L. J., Muzina M., Zwain S., and Buchanan C., Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation, Xenotransplantation. (2007) 14, no. 2, 157–161, 2-s2.0-33947360223, https://doi.org/10.1111/j.1399-3089.2007.00384.x.
- 30 Calafiore R., Basta G., Luca G., Lemmi A., Racanicchi L., Mancuso F., Montanucci M. P., and Brunetti P., Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus, Transplantation Proceedings. (2006) 38, no. 4, 1156–1157, 2-s2.0-33744516830, https://doi.org/10.1016/j.transproceed.2006.03.014.
- 31 Sun A. M., Cai Z., Shi Z., Ma F., and O′Shea G. M., Microencapsulated hepatocytes: an in vitro and in vivo study, Biomaterials, Artificial Cells, and Artificial Organs. (1987) 15, no. 2, 483–496, 2-s2.0-0023159166.
- 32 Wong H. and Chang T. M. S., The viability and regeneration of artificial cell microencapsulated rat hepatocyte xenograft transplants in mice, Biomaterials, Artificial Cells, and Artificial Organs. (1988) 16, no. 4, 731–739, 2-s2.0-0023757077.
- 33 Teng Y., Wang Y., Li S., Wang W., Gu R., Guo X., Nan X., Ma X., and Pei X., Treatment of acute hepatic failure in mice by transplantation of mixed microencapsulation of rat hepatocytes and transgenic human fetal liver stromal cells, Tissue Engineering Part C. (2010) 16, no. 5, 1125–1134, 2-s2.0-77954626100, https://doi.org/10.1089/ten.tec.2009.0374.
- 34 Mei J., Sgroi A., Mai G., Baertschiger R., Gonelle-Gispert C., Serre-Beinier V., Morel P., and Bühler L. H., Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice, Cell Transplantation. (2009) 18, no. 1, 101–110, 2-s2.0-66849132423, https://doi.org/10.3727/096368909788237168.
- 35 Zhang F. T., Wan H. J., Li M. H., Ye J., Yin M. J., Huang C. Q., and Yu J., Transplantation of microencapsulated umbilical-cord-bloodderived hepatic-like cells for treatment of hepatic failure, World Journal of Gastroenterology. (2011) 17, no. 7, 938–945, 2-s2.0-79955934308, https://doi.org/10.3748/wjg.v17.i7.938.
- 36 Zhang H., Zhu S. J., Wang W., Wei Y. J., and Hu S. S., Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function, Gene Therapy. (2008) 15, no. 1, 40–48, 2-s2.0-37249094049, https://doi.org/10.1038/sj.gt.3303049.
- 37 Al Kindi A. H., Asenjo J. F., Ge Y., Chen G. Y., Bhathena J., Chiu R. C. J., Prakash S., and Shum-Tim D., Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy, European Journal of Cardio-thoracic Surgery. (2011) 39, no. 2, 241–247, 2-s2.0-78751585117, https://doi.org/10.1016/j.ejcts.2010.03.066.
- 38 Cabané P., Gac P., Amat J., Pineda P., Rossi R., Caviedes R., and Caviedes P., Allotransplant of microencapsulated parathyroid tissue in severe postsurgical hypoparathyroidism: a case report, Transplantation Proceedings. (2009) 41, no. 9, 3879–3883, 2-s2.0-71749105304, https://doi.org/10.1016/j.transproceed.2009.06.211.
- 39 Hasse C., Schrezenmeir J., Stinner B., Schark C., Wagner P. K., Neumann K., and Rothmund M., Successful allotransplantation of microencapsulated parathyroids in rats, World Journal of Surgery. (1994) 18, no. 4, 630–634, 2-s2.0-0028023186.
- 40 Hasse C., Klöck G., Schlosser A., Zimmermann U., and Rothmund M., Parathyroid allotransplantation without immunosuppression, The Lancet. (1997) 350, no. 9087, 1296–1297, 2-s2.0-0344653613, https://doi.org/10.1016/S0140-6736(05)62473-7.
- 41 Rinsch C., Dupraz P., Schneider B. L., Déglon N., Maxwell P. H., Ratcliffe P. J., and Aebischer P., Delivery of erythropoietin by encapsulated myoblasts in a genetic model of severe anemia, Kidney International. (2002) 62, no. 4, 1395–1401, 2-s2.0-0036378210, https://doi.org/10.1046/j.1523-1755.2002.00574.x.
- 42 Régulier E., Schneider B. L., Déglon N., Beuzard Y., and Aebischer P., Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts, Gene Therapy. (1998) 5, no. 8, 1014–1022, 2-s2.0-0031718623.
- 43 Schwenter F., Zarei S., Luy P., Padrun V., Bouche N., Lee J. S., Mulligan R. C., Morel P., and MacH N., Cell encapsulation technology as a novel strategy for human anti-tumor immunotherapy, Cancer Gene Therapy. (2011) 18, no. 8, 553–562, 2-s2.0-79960557812, https://doi.org/10.1038/cgt.2011.22.
- 44 Vandenbossche G. M. R., De Bruyne G. K., Bruyneel E. A., Clemminck G., Vleminckx K., Van Roy F. M., and Mareel M. M., Micro-encapsulation of MDCK-ras-e cells prevents loss of E-cadherin invasion-suppressor function in vivo, International Journal of Cancer. (1994) 57, no. 1, 73–80, 2-s2.0-0028222770.
- 45 Teng H., Zhang Y., Wang W., Ma X., and Fei J., Inhibition of tumor growth in mice by endostatin derived from abdominal transplanted encapsulated cells, Acta Biochimica et Biophysica Sinica. (2007) 39, no. 4, 278–284, 2-s2.0-34247188017, https://doi.org/10.1111/j.1745-7270.2007.00273.x.
- 46 Zhang Y., Wang W., Xie Y., Yu W., Teng H., Liu X., Zhang X., Guo X., Fei J., and Ma X., In vivo culture of encapsulated endostatin-secreting Chinese hamster ovary cells for systemic tumor inhibition, Human Gene Therapy. (2007) 18, no. 5, 474–481, 2-s2.0-34249822255, https://doi.org/10.1089/hum.2006.166.
- 47 Schuch G., Oliveira-Ferrer L., Loges S., Laack E., Bokemeyer C., Hossfeld D. K., Fiedler W., and Ergun S., Antiangiogenic treatment with endostatin inhibits progression of AML in vivo, Leukemia. (2005) 19, no. 8, 1312–1317, 2-s2.0-23744466261, https://doi.org/10.1038/sj.leu.2403824.
- 48 Joki T., Machluf M., Atala A., Zhu J., Seyfried N. T., Dunn I. F., Abe T., Carroll R. S., and Black P. M., Continuous release of endostatin from microencapsulated engineered cells for tumor therapy, Nature Biotechnology. (2001) 19, no. 1, 35–39, 2-s2.0-0035172407, https://doi.org/10.1038/83481.
- 49 Xu W., Liu L., and Charles I. G., Microencapsulated iNOS-expressing cells cause tumor suppression in mice, The FASEB Journal. (2002) 16, no. 2, 213–215, 2-s2.0-0036481660.
- 50
Afkhami F.,
Durocher Y., and
Prakash S., Investigation of antiangiogenic tumor therapy potential of microencapsulated HEK293 VEGF165b producing cells, Journal of Biomedicine and Biotechnology. (2010) 2010, 2-s2.0-78349245213, https://doi.org/10.1155/2010/645610, 645610.
10.1155/2010/645610 Google Scholar
- 51 Cirone P., Bourgeois J. M., and Chang P. L., Antiangiogenic cancer therapy with microencapsulated cells, Human Gene Therapy. (2003) 14, no. 11, 1065–1077, 2-s2.0-0038488554, https://doi.org/10.1089/104303403322124783.
- 52 Read T. A., Sorensen D. R., Mahesparan R., Enger P. Ø., Timpl R., Olsen B. R., Hjelstuen M. H. B., Haraldseth O., and Bjerkvig R., Local endostatin treatment of gliomas administered by microencapsulated producer cells, Nature Biotechnology. (2001) 19, no. 1, 29–34, 2-s2.0-0035174207, https://doi.org/10.1038/83471.
- 53 Li A. A., Shen F., Zhang T., Cirone P., Potter M., and Chang P. L., Enhancement of myoblast microencapsulation for gene therapy, Journal of Biomedical Materials Research Part B. (2006) 77, no. 2, 296–306, 2-s2.0-33646359937, https://doi.org/10.1002/jbm.b.30342.
- 54 Bartsch G., Eggert K., Soker S., Bokemeyer C., Hautmann R., and Schuch G., Combined antiangiogenic therapy is superior to single inhibitors in a model of renal cell carcinoma, Journal of Urology. (2008) 179, no. 1, 326–332, 2-s2.0-36749058532, https://doi.org/10.1016/j.juro.2007.08.086.
- 55 Moran D. M., Koniaris L. G., Jablonski E. M., Cahill P. A., Halberstad C. R., and McKillop I. H., Microencapsulation of engineered cells to deliver sustained high circulating levels of interleukin-6 to study hepatocellular carcinoma progression, Cell Transplantation. (2006) 15, no. 8-9, 785–798, 2-s2.0-33846254588.
- 56 Shi M., Hao S., Quereshi M., Guo X., Zheng C., and Xiang J., Significant tumor regression induced by microencapsulation of recombinant tumor cells secreting fusion protein, Cancer Biotherapy and Radiopharmaceuticals. (2005) 20, no. 3, 260–266, 2-s2.0-22344455755, https://doi.org/10.1089/cbr.2005.20.260.
- 57 Orive G., Hernandez R. M., Murua A., Spuch C., Antequera D., Vargas T., Carro E., and Pedraz J. L., Microencapsulated cells expressing VEGF for the treatment of Alzheimer′s disease, pp.S2–S5, 2007.
- 58 Borlongan C. V., Skinner S. J. M., Geaney M., Vasconcellos A. V., Elliott R. B., and Emerich D. F., Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke, Stroke. (2004) 35, no. 9, 2206–2210, 2-s2.0-4344679545, https://doi.org/10.1161/01.STR.0000138954.25825.0b.
- 59 Mesens J., Rickey M. E., and Atkins T. J., Microencapsulated 3-piperidinyl-substituted 1,2-benzisoxazoles 1,2-benzisothiazoles, no.US7118763B2, 2006.
- 60 Ramstack J. M., Herbert P. F., Strobel J., and Atkins T. J., Preparation of biodegradable microparticles containing a biologically active agent, vol. 08725439, no.US5650173A, 1997.
- 61 Cleland J. L., Lim A., and Powell M. F., Methods and compositions for microencapsulation of adjuvants, vol. 460, 363, no. US005643605A, 1997.
- 62 Jones D. H., Farrar G. H., and Clegg J. C. S., Method of making microencapsulated DNA for vaccination and gene therapy, vol. 09079400, no.US06270795B1, 2001.
- 63 Farrar G. H., Microencapsulated DNA for gene therapy, vol. 99113415.6, no. EP0965336 A1, 1999.
- 64 Hyon S. H. and Ikada Y., Polylactic acid type microspheres containing physiologically active substance and process for preparing the same, vol. 315, 167, no. US005100669A, 1992.
- 65 Woo B. H., Dagar S. H., and Yang K. Y., Sustained-release microspheres and methods of making and using same, vol. 11/587, 883, no.US20080131513A1, 2008.
- 66 Hasan A. S., Socha M., Lamprecht A., Ghazouani F. E., Sapin A., Hoffman M., Maincent P., and Ubrich N., Effect of the microencapsulation of nanoparticles on the reduction of burst release, International Journal of Pharmaceutics. (2007) 344, no. 1-2, 53–61, 2-s2.0-34648843305, https://doi.org/10.1016/j.ijpharm.2007.05.066.
- 67 Illum L. and Ping H., Gastroretentive controlled release microspheres for improved drug delivery, vol. 09/424, 145, no.US006207197B1, 2001.
- 68 Zheng J., Liu C., Bao D., Zhao Y., and Ma X., Preparation and evaluation of floating-bioadhesive microparticles containing clarithromycin for the eradication of Helicobacter pylori, Journal of Applied Polymer Science. (2006) 102, no. 3, 2226–2232, 2-s2.0-33750317837, https://doi.org/10.1002/app.24319.
- 69 Metz T., Haque T., Chen H., Prakash S., Amre D., and Das S., Preparation and in vitro analysis of microcapsule thalidomide formulation for targeted suppression of TNF-α, Drug Delivery. (2006) 13, no. 5, 331–337, 2-s2.0-33746824216, https://doi.org/10.1080/10717540500466097.
- 70
Reithmeier H.,
Herrmann J., and
Göpferich A., Lipid microparticles as a parenteral controlled release device for peptides, Journal of Controlled Release. (2001) 73, no. 2-3, 339–350, 2-s2.0-0035850227, https://doi.org/10.1016/S0168-3659(01)00354-6.
10.1016/S0168-3659(01)00354-6 Google Scholar
- 71 Deluca P., Jiang G., and Woo B., Poly(Acryloyl-Hydroxyethyl Starch)-PLGA Composition Microspheres, vol.US10549760, no.US20070122487A1, 2007.
- 72 Haghpanah M., Marriott C., and Martin G. P., Potential use of microencapsulation for sustained drug delivery to the respiratory tract, Journal of Aerosol Medicine. (1994) 7, no. 2, 185–188, 2-s2.0-0028061090.
- 73 Grenha A., Seijo B., and Remuñán-López C., Microencapsulated chitosan nanoparticles for lung protein delivery, European Journal of Pharmaceutical Sciences. (2005) 25, no. 4-5, 427–437, 2-s2.0-20744434748, https://doi.org/10.1016/j.ejps.2005.04.009.
- 74 Jelvehgari M., Barar J., Valizadeh H., and Heidari N., Preparation and evaluation of poly (ε-caprolactone) nanoparticles-in-microparticles by W/O/W emulsion method, Iranian Journal of Basic Medical Sciences. (2010) 13, no. 3, 85–96, 2-s2.0-77954464044.
- 75 Grenha A., Remuñán-López C., Carvalho E. L. S., and Seijo B., Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins, European Journal of Pharmaceutics and Biopharmaceutics. (2008) 69, no. 1, 83–93, 2-s2.0-41549155028, https://doi.org/10.1016/j.ejpb.2007.10.017.
- 76 Lee J. Y., Seo M. H., Choi I. J., Kim J. H., and Pai C. M., Locally administrable, biodegradable and sustained-release pharmaceutical composition for periodontitis and process for preparation thereof, vol. 09/180, 480, no.US006193994B1, 2001.
- 77 Patel H., Patel R., and Patel G., Ionotropic gelation technique for microencapsulation of antihypertensive drug, Webmed Central Pharmaceutical Sciences. (2010) 1, no. 10, 1–10.
- 78 Biswal I., Dinda A., Das D., Si S., and Chowdary K. A., Encapsulation protocol for highly hydrophilic drug using non-biodegradable polymer, International Journal of Pharmacy and Pharmaceutical Sciences. (2011) 3, no. 2, 256–259, 2-s2.0-79955943441.
- 79 Khamanga S. M., Parfitt N., Nyamuzhiwa T., Haidula H., and Walker R. B., The evaluation of Eudragit microcapsules manufactured by solvent evaporation using USP Apparatus 1, Dissolution Technologies. (2009) 16, no. 2, 15–22, 2-s2.0-69349088417.
- 80 Kato Y., Onishi H., and Machida Y., Application of chitin and chitosan derivatives in the pharmaceutical field, Current Pharmaceutical Biotechnology. (2003) 4, no. 5, 303–309, 2-s2.0-0141504461, https://doi.org/10.2174/1389201033489748.
- 81 Urbanska A. M., Karagiannis E. D., Guajardo G., Langer R. S., and Anderson D. G., Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer, Biomaterials. (2012) 33, no. 18, 4752–4761, https://doi.org/10.1016/j.biomaterials.2012.03.023.
- 82 Ahmad M., Madni A., Usman M., Munir A., Akhtar N., and Shoaib Khan H. M., Pharmaceutical micro encapsulation technology for development of controlled release drug delivery systems, Proceedings of World Academy of Science, Engineering and Technology. (2011) 75, 384–387, 2-s2.0-79953646528.
- 83 Touré A., Lu H. B., Zhang X., and Xueming X., Microencapsulation of ginger oil in 18DE maltodextrin/whey protein isolate, Journal of Herbs, Spices and Medicinal Plants. (2011) 17, no. 2, 183–195, 2-s2.0-79958845133, https://doi.org/10.1080/10496475.2011.583137.
- 84 Vaugn W. M., van Hamont J. E., and Setterstrom J. A., Sustained release non-steroidal, anti-inflammatory and lidocaine PLGA microspheres, vol. 08/675, 895, no.US06217911B1, 2001.
- 85 Jelvehgari M., Barar J., Valizadeh H., Delf Loveymi B., and Ziapour M., Preparation of diclofenac sodium composite microparticles with improved initial release property, Scientia Iranica. (2010) 17, no. 2, 79–89, 2-s2.0-79951707153.
- 86 Yang Y. Y., Chia H. H., and Chung T. S., Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method, Journal of Controlled Release. (2000) 69, no. 1, 81–96, 2-s2.0-0034601882, https://doi.org/10.1016/S0168-3659(00)00291-1.
- 87 Ribeiro Dos Santos I., Richard J., Pech B., Thies C., and Benoit J. P., Microencapsulation of protein particles within lipids using a novel supercritical fluid process, International Journal of Pharmaceutics. (2002) 242, no. 1-2, 69–78, 2-s2.0-0037151563, https://doi.org/10.1016/S0378-5173(02)00149-7.
- 88 Li B., Wujie Z., and Pan Z., A novel method for microencapsulation of protein using high-voltage electrostatic field system, Proceedings of the American Society of Agricultural and Biological Engineers International (ASABE ′06), 2006.
- 89 Kulamarva A., Raja P. M. V., Bhathena J., Chen H., Talapatra S., Ajayan P. M., Nalamasu O., and Prakash S., Microcapsule carbon nanotube devices for therapeutic applications, Nanotechnology. (2009) 20, no. 2, 2-s2.0-58149250345, https://doi.org/10.1088/0957-4484/20/2/025612, 025612.
- 90 Smith A. and Hunneyball I. M., Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration, International Journal of Pharmaceutics. (1986) 30, no. 2-3, 215–220, 2-s2.0-0022496987.
- 91 Ratnakar Tandale S., Microencapsulation of vitamin C and gallic acid in whey protein concentrate by spray and freeze drying—characterization and degradation kinetics [M.S. thesis], 2007.
- 92 Ramtoola Z., Controlled release biodegradable micro- and nanospheres containing cyclosporin, vol. 479, 509, no.US005641745A, 1997.
- 93 Brannon-Peppas L., Controlled release in the food and cosmetics industries, Polymeric Delivery Systems, 1993, no. chapter 3, American Chemical Society, 42–52.
- 94 Aebischer P., Winn S. R., and Galletti P. M., Transplantation of neural tissue in polymer capsules, Brain Research. (1988) 448, no. 2, 364–368, 2-s2.0-0023926984.
- 95
Colton C. K., Implantable biohybrid artificial organs, Cell Transplantation. (1995) 4, no. 4, 415–436, 2-s2.0-0029128101, https://doi.org/10.1016/0963-6897(95)00025-S.
10.1177/096368979500400413 Google Scholar
- 96 Calafiore R., Alginate microcapsules for pancreatic islet cell graft immunoprotection: struggle and progress towards the final cure for type 1 diabetes mellitus, Expert Opinion on Biological Therapy. (2003) 3, no. 2, 201–205, 2-s2.0-0037393499, https://doi.org/10.1517/14712598.3.2.201.
- 97 Wikström J., Elomaa M., Syväjärvi H., Kuokkanen J., Yliperttula M., Honkakoski P., and Urtti A., Alginate-based microencapsulation of retinal pigment epithelial cell line for cell therapy, Biomaterials. (2008) 29, no. 7, 869–876, 2-s2.0-37249036935, https://doi.org/10.1016/j.biomaterials.2007.10.056.
- 98 Li M., Rouaud O., and Poncelet D., Microencapsulation by solvent evaporation: state of the art for process engineering approaches, International Journal of Pharmaceutics. (2008) 363, no. 1-2, 26–39, 2-s2.0-51649129933, https://doi.org/10.1016/j.ijpharm.2008.07.018.
- 99 Chang T. M. S., Semipermeable microcapsules, Science. (1964) 146, no. 3643, 524–525, 2-s2.0-37049233007.
- 100 Wittbecker E. L. and Morgan P. W., Interfacial polycondensation. I, Journal of Polymer Science. (1959) 40, no. 137, 289–297, https://doi.org/10.1002/pol.1959.1204013701.
- 101 Arshady R., Preparation of microspheres and microcapsules by interfacial polycondensation techniques, Journal of Microencapsulation. (1989) 6, no. 1, 13–28, 2-s2.0-0024578048.
- 102 Levy M. C., Lefebvre S., Rahmouni M., Andry M. C., and Manfait M., Fourier transform infrared spectroscopic studies of human serum albumin microcapsules prepared by interfacial cross-linking with terephthaloylchloride: influence of polycondensation pH on spectra and relation with microcapsule morphology and size, Journal of Pharmaceutical Sciences. (1991) 80, no. 6, 578–585, 2-s2.0-0025728166.
- 103 Levy M. C. and Andry M. C., Microcapsules prepared through interfacial cross-linking of starch derivatives, International Journal of Pharmaceutics. (1990) 62, no. 1, 27–35, 2-s2.0-0025288356, https://doi.org/10.1016/0378-5173(90)90028-3.
- 104
Brown E. N.,
Kessler M. R.,
Sottos N. R., and
White S. R., In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene, Journal of Microencapsulation. (2003) 20, no. 6, 719–730, 2-s2.0-0242610367, https://doi.org/10.1080/0265204031000154160.
10.3109/02652040309178083 Google Scholar
- 105 Mok H. and Park T. G., Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent, European Journal of Pharmaceutics and Biopharmaceutics. (2008) 70, no. 1, 137–144, 2-s2.0-50149117923, https://doi.org/10.1016/j.ejpb.2008.04.006.
- 106 Teunou E. and Poncelet D., Batch and continuous fluid bed coating—review and state of the art, Journal of Food Engineering. (2002) 53, no. 4, 325–340, 2-s2.0-0036680727, https://doi.org/10.1016/S0260-8774(01)00173-X.
- 107 Singh M. N., Hemant K. S. Y., Ram M., and Shivakumar H. G., Microencapsulation: a promising technique for controlled drug delivery, Journal of Research in Pharmaceutical Sciences. (2010) 5, no. 2, 65–77, 2-s2.0-79953184652.
- 108 Dreu R., Lustrik M., Perpar M., Zun I., and Srcic S., Fluid-bed coater modifications and study of their influence on the coating process of pellets, Drug Development and Industrial Pharmacy. (2012) 38, no. 4, 501–511, https://doi.org/10.3109/03639045.2011.617754.
- 109 Arshady R., Microcapsules for food, Journal of Microencapsulation. (1993) 10, no. 4, 413–435, 2-s2.0-0027371627.
- 110 Senuma Y., Lowe C., Zweifel Y., Hilborn J. G., and Marison I., Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization, Biotechnology and Bioengineering. (2000) 67, no. 5, 616–622.
- 111 Whelehan M. and Marison I. W., Microencapsulation using vibrating technology, Journal of Microencapsulation. (2012) 28, no. 8, 669–688.
- 112 Haas P. A., Formation of uniform liquid drops by application of vibration to laminar jets, Industrial and Engineering Chemistry Research. (1992) 31, no. 3, 959–967, 2-s2.0-0026836064.
- 113 Patil J. S., Kamalapur M. V., Marapur S. C., and Kadam D. V., Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review, Digest Journal of Nanomaterials and Biostructures. (2010) 5, no. 1, 241–248, 2-s2.0-77951167177.
- 114
Prakash S.,
Tomaro-Duchesneau C.,
Saha S., and
Cantor A., The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells, Journal of Biomedicine and Biotechnology. (2011) 2011, 12, 981214, https://doi.org/10.1155/2011/981214.
10.1155/2011/981214 Google Scholar
- 115 Haque T., Chen H., Ouyang W., Martoni C., Lawuyi B., Urbanska A., and Prakash S., Investigation of a new microcapsule membrane combining alginate, chitosan, polyethylene glycol and poly-L-lysine for cell transplantation applications, International Journal of Artificial Organs. (2005) 28, no. 6, 631–637, 2-s2.0-23144434599.
- 116 Chen H., Ouyang W., Jones M., Metz T., Martoni C., Haque T., Cohen R., Lawuyi B., and Prakash S., Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy, Cell Biochemistry and Biophysics. (2007) 47, no. 1, 159–168, 2-s2.0-34147093043.
- 117 Ogushi Y., Sakai S., and Kawakami K., Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications, Journal of Bioscience and Bioengineering. (2007) 104, no. 1, 30–33, 2-s2.0-34547662890, https://doi.org/10.1263/jbb.104.30.
- 118 Horinaka J. I., Kani K., Itokawa Y., Ogawa E., and Shindo Y., Gelation of gellan gum aqueous solutions studied by polarization modulation spectroscopy, Biopolymers. (2004) 75, no. 5, 376–383, 2-s2.0-10044261213, https://doi.org/10.1002/bip.20134.
- 119 Madan P. L., Microencapsulation I. Phase separation or coacervation, Drug Development and Industrial Pharmacy. (1978) 4, no. 1, 95–116, https://doi.org/10.3109/03639047809055641.
- 120 Mohanty B. and Bohidar H. B., Systematic of alcohol-induced simple coacervation in aqueous gelatin solutions, Biomacromolecules. (2003) 4, no. 4, 1080–1086, 2-s2.0-0042197126, https://doi.org/10.1021/bm034080l.
- 121 Yeo S. D. and Kiran E., Formation of polymer particles with supercritical fluids: a review, Journal of Supercritical Fluids. (2005) 34, no. 3, 287–308, 2-s2.0-17844387348, https://doi.org/10.1016/j.supflu.2004.10.006.
- 122 Padrela L., Rodrigues M. A., Velaga S. P., Matos H. A., and de Azevedo E. G., Formation of indomethacin-saccharin cocrystals using supercritical fluid technology, European Journal of Pharmaceutical Sciences. (2009) 38, no. 1, 9–17, 2-s2.0-67650220896, https://doi.org/10.1016/j.ejps.2009.05.010.
- 123 Lacroix C., Grattepanche F., Doleyres Y., and Bergmaier D., Immobilised cell technologies for the dairy industry, Applications of Cell Immobilisation Biotechnology, 2005, no. chapter 18, Springer, Amsterdam, The Netherlands, 295–319.
- 124 Gibbs B. F., Kermasha S., Alli I., and Mulligan C. N., Encapsulation in the food industry: a review, International Journal of Food Sciences and Nutrition. (1999) 50, no. 3, 213–224, 2-s2.0-0032976683, https://doi.org/10.1080/096374899101256.
- 125 FAO and WHO, Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, 2001.
- 126 Prakash S. and Chang T. M. S., Preparation and in vitro analysis of microencapsulated genetically engineered E. coli DH5 cells for urea and ammonia removal, Biotechnology and Bioengineering. (1995) 46, no. 6, 621–626, 2-s2.0-0029052561, https://doi.org/10.1002/bit.260460615.
- 127 Gao H., Yu Y., Cai B., and Wang M., Preparation and properties of microencapsulated genetically engineered bacteria cells for oral therapy of uremia, Chinese Science Bulletin. (2004) 49, no. 11, 1117–1121, 2-s2.0-33644574165, https://doi.org/10.1360/03wb0199.
- 128 Anderson J. W. and Gilliland S. E., Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans, Journal of the American College of Nutrition. (1999) 18, no. 1, 43–50, 2-s2.0-0033024518.
- 129 Bhathena J., Kulamarva A., Martoni C., Urbanska A. M., and Prakash S., Preparation and in vitro analysis of microencapsulated live Lactobacillus fermentum 11976 for augmentation of feruloyl esterase in the gastrointestinal tract, Biotechnology and Applied Biochemistry. (2008) 50, no. 1, 1–9, 2-s2.0-43049148381, https://doi.org/10.1042/BA20070007.
- 130 Tomaro-Duchesneau C., Saha S., Malhotra M., Coussa-Charley M., Al-Salami H., Jones M. L., Labbe A., and Prakash S., Lactobacillus fermentum NCIMB, 5221 has a greater ferulic acid production compared to other ferulic acid esterase producing Lactobacilli, International Journal of Probiotics and Prebiotics. (2012) 7, no. 1, 23–32.
- 131 Teramura Y. and Iwata H., Bioartificial pancreas. Microencapsulation and conformal coating of islet of Langerhans, Advanced Drug Delivery Reviews. (2010) 62, no. 7-8, 827–840, 2-s2.0-77953688274, https://doi.org/10.1016/j.addr.2010.01.005.
- 132 Scanlon K. J., Cancer gene therapy: challenges and opportunities, Anticancer Research. (2004) 24, no. 2, 501–504, 2-s2.0-2442440103.
- 133 Bisceglie V., Uber die antineoplastische immunitat: heterologe Einpflanzung von Tumoren in Huhner-embryonen, Zeitschrift für Krebsforschung. (1933) 40, no. 1, 122–140, 2-s2.0-34347180355, https://doi.org/10.1007/BF01636399.
- 134 Van Belle T. L., Coppieters K. T., and Von Herrath M. G., Type 1 diabetes: etiology, immunology, and therapeutic strategies, Physiological Reviews. (2011) 91, no. 1, 79–118, 2-s2.0-78751662679, https://doi.org/10.1152/physrev.00003.2010.
- 135 Shapiro A. M. J., Lakey J. R. T., Ryan E. A., Korbutt G. S., Toth E., Warnock G. L., Kneteman N. M., and Rajotte R. V., Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen, New England Journal of Medicine. (2000) 343, no. 4, 230–238, 2-s2.0-0034721255, https://doi.org/10.1056/NEJM200007273430401.
- 136 Kasiske B. L., Chakkera H. A., Louis T. A., and Ma J. Z., A meta-analysis of immunosuppression withdrawal trials in renal transplantation, Journal of the American Society of Nephrology. (2000) 11, no. 10, 1910–1917, 2-s2.0-0033774719.
- 137 Van Leeuwen M. T., Grulich A. E., McDonald S. P., McCredie M. R. E., Amin J., Stewart J. H., Webster A. C., Chapman J. R., and Vajdic C. M., Immunosuppression and other risk factors for lip cancer after kidney transplantation, Cancer Epidemiology Biomarkers and Prevention. (2009) 18, no. 2, 561–569, 2-s2.0-60549108185, https://doi.org/10.1158/1055-9965.EPI-08-0919.
- 138 Dixit V., Darvasi R., Arthur M., Brezina M., Lewin K., and Gitnick G., Restoration of liver function in Gunn rats without immunosuppression using transplanted microencapsulated hepatocytes, Hepatology. (1990) 12, no. 6, 1342–1349, 2-s2.0-0025608285, https://doi.org/10.1002/hep.1840120615.
- 139 Lee W. M., Squires R. H., Nyberg S. L., Doo E., and Hoofnagle J. H., Acute liver failure: summary of a workshop, Hepatology. (2008) 47, no. 4, 1401–1415, 2-s2.0-42249102412, https://doi.org/10.1002/hep.22177.
- 140 Bernal W., Auzinger G., Dhawan A., and Wendon J., Acute liver failure, The Lancet. (2010) 376, no. 9736, 190–201, 2-s2.0-77955016202, https://doi.org/10.1016/S0140-6736(10)60274-7.
- 141 Van Poll D., Nahmias Y., Soto-Gutierrez A., Ghasemi M., Yagi H., Kobayashi N., Yarmush M. L., and Hertl M., Human immune reactivity against liver sinusoidal endothelial cells from GalTα(1,3)GalT-deficient pigs, Cell Transplantation. (2010) 19, no. 6-7, 783–789, 2-s2.0-77958524721, https://doi.org/10.3727/096368910X508898.
- 142 Gerlach J. C., Zeilinger K., and Patzer J. F., Bioartificial liver systems: why, what, whither?, Regenerative Medicine. (2008) 3, no. 4, 575–595, 2-s2.0-49149127731, https://doi.org/10.2217/17460751.3.4.575.
- 143 Abouna G. M., Organ shortage crisis: problems and possible solutions, Transplantation Proceedings. (2008) 40, no. 1, 34–38, 2-s2.0-38749145527, https://doi.org/10.1016/j.transproceed.2007.11.067.
- 144 Vivarelli M., Dazzi A., Zanello M., Cucchetti A., Cescon M., Ravaioli M., Del Gaudio M., Lauro A., Grazi G. L., and Pinna A. D., Effect of different immunosuppressive schedules on recurrence-free survival after liver transplantation for hepatocellular carcinoma, Transplantation. (2010) 89, no. 2, 227–231, 2-s2.0-76649135180, https://doi.org/10.1097/TP.0b013e3181c3c540.
- 145 Duffy J. P., Hong J. C., Farmer D. G., Ghobrial R. M., Yersiz H., Hiatt J. R., and Busuttil R. W., Vascular complications of orthotopic liver transplantation: experience in more than 4,200 patients, Journal of the American College of Surgeons. (2009) 208, no. 5, 896–903, 2-s2.0-64949138906, https://doi.org/10.1016/j.jamcollsurg.2008.12.032.
- 146 Smets F., Najimi M., and Sokal E. M., Cell transplantation in the treatment of liver diseases, Pediatric Transplantation. (2008) 12, no. 1, 6–13, 2-s2.0-37849035694, https://doi.org/10.1111/j.1399-3046.2007.00788.x.
- 147 Xi J., Wang Y., Zhang P., He L., Nan X., Yue W., and Pei X., Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells, PLoS ONE. (2010) 5, no. 12, 2-s2.0-78651246288, https://doi.org/10.1371/journal.pone.0014457, e14457.
- 148 McKay B. S., Goodman B., Falk T., and Sherman S. J., Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson′s disease: results from an in vitro model system, Experimental Neurology. (2006) 201, no. 1, 234–243, 2-s2.0-33747355985, https://doi.org/10.1016/j.expneurol.2006.04.016.
- 149 Löhr J. M., Saller R., Salmons B., and Günzburg W. H., Microencapsulation of genetically engineered cells for cancer therapy, Methods in Enzymology. (2002) 346, article 35, 603–618, 2-s2.0-0036372645, https://doi.org/10.1016/S0076-6879(02)46080-6.
- 150 Anderson J. M. and Shive M. S., Biodegradation and biocompatibility of PLA and PLGA microspheres, Advanced Drug Delivery Reviews. (1997) 28, no. 1, 5–24, 2-s2.0-0343247711, https://doi.org/10.1016/S0169-409X(97)00048-3.
- 151 Garces Garces J., Microcapsules, no. US6818296B1, 2004.
- 152 Illum L. and Ping H., Gastroretentive controlled release microspheres for improved drug delivery, vol. 09424145, no. US6207197B1, 2001.
- 153 Smidsrod O. and Skjak-Braek G., Alginate as immobilization matrix for cells, Trends in Biotechnology. (1990) 8, no. 3, 71–78, 2-s2.0-0025391442.
- 154 Westesen K. and Siekmann B., Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof, vol. 757, 276, no. US005885486A, 1999.
- 155 Gasco M. R., Pharmaceutical composition in form of solid lipidic microparticles suitable to parenteral administration, vol.EP19980929383, no.EP0988031, 2003.
- 156 Poncelet D., Microencapsulation: fundamentals, methods and applications, Surface Chemistry in Biomedical and Environmental Science, 2006, Springer, Amsterdam, The Netherlands, 23–34.
- 157 Obeidat W. M., Recent patents review in microencapsulation of pharmaceuticals using the emulsion solvent removal methods, Recent Patents on Drug Delivery and Formulation. (2009) 3, no. 3, 178–192, 2-s2.0-70350765274, https://doi.org/10.2174/187221109789105612.
- 158 Rickey M. E., Preparation of biodegradable, biocompatible microparticles containing a biologically active agent, vol. 9/578717, no.US6290983, 2001.
- 159 Reid R. H., van Hamont J. E., Brown W. R., Boedeker E. C., and Thies C., Microparticle carriers of maximal uptake capacity by both M cells and non-M cells, vol. 242, 960, no.US005693343A, 1997.
- 160 Babtsov V., Shapiro Y., and Kvitnitsky E., Method of microencapsulation, vol. 10, 130, 529, no.US6932984, 2005.
- 161 Hughes P. M. and Olejnik C., Delivery of a drug via subconjunctival or periocular delivery of a prodrug in a polymeric microparticle, vol. 20040777796, no.EP1644047, 2006.
- 162 Tan A., Simovic S., Davey A. K., Rades T., and Prestidge C. A., Silica-lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs, Journal of Controlled Release. (2009) 134, no. 1, 62–70, 2-s2.0-59049088106, https://doi.org/10.1016/j.jconrel.2008.10.014.
- 163 Farrar G. H., Tinsley-Bown A. M., and Jones D. H., Encapsulation of bioactive agents, vol. 09/310, 936, no.US6309569, 2003.
- 164 Kamei S., Yamada M., and Ogawa Y., Method of producing sustained-release microcapsules, vol. 562, 634, no.US005575987A, 1996.
- 165 Wang W., Liu X., Xie Y., Zhang H., Yu W., Xiong Y., Xie W., and Ma X., Microencapsulation using natural polysaccharides for drug delivery and cell implantation, Journal of Materials Chemistry. (2006) 16, no. 32, 3252–3267, 2-s2.0-33746870027, https://doi.org/10.1039/b603595g.
- 166 Kamei S., Igari Y., and Ogawa Y., Sustained-release preparation, vol. 10/127, 558, no.US007048947B2, 2006.
- 167 Caliceti P., Salmaso S., Elvassore N., and Bertucco A., Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques, Journal of Controlled Release. (2004) 94, no. 1, 195–205, 2-s2.0-0346735299, https://doi.org/10.1016/j.jconrel.2003.10.015.
- 168 Romoser A., Ritter D., Majitha R., Meissner K. E., McShane M., and Sayes C. M., Mitigation of quantum dot cytotoxicity by microencapsulation, PLoS ONE. (2011) 6, no. 7, 2-s2.0-79960629601, https://doi.org/10.1371/journal.pone.0022079, e22079.
- 169 Li X., Anton N., Ta T. M., Zhao M., Messaddeq N., and Vandamme T. F., Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery, International Journal of Nanomedicine. (2011) 6, no. 1, 1313–1325.
- 170 Lee K. E., Cho S. H., Lee H. B., Jeong S. Y., and Yuk S. H., Microencapsulation of lipid nanoparticles containing lipophilic drug, Journal of Microencapsulation. (2003) 20, no. 4, 489–496, 2-s2.0-0038158264, https://doi.org/10.1080/0265204031000093032.
- 171 Prakash S., Malhotra M., Shao W., Tomaro-Duchesneau C., and Abbasi S., Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy, Advanced Drug Delivery Reviews. (2011) 63, no. 14-15, 1340–1351.
- 172 Prakash S. and Kulamarva A. G., Recent advances in drug delivery: potential and limitations of carbon nanotubes, Recent Patents on Drug Delivery & Formulation. (2007) 1, no. 3, 214–221, 2-s2.0-63149181036.
- 173 Paramera E. I., Konteles S. J., and Karathanos V. T., Microencapsulation of curcumin in cells of Saccharomyces cerevisiae, Food Chemistry. (2011) 125, no. 3, 892–902, 2-s2.0-78149410166, https://doi.org/10.1016/j.foodchem.2010.09.063.
- 174 Shi G., Rao L., Yu H., Xiang H., Yang H., and Ji R., Stabilization and encapsulation of photosensitive resveratrol within yeast cell, International Journal of Pharmaceutics. (2008) 349, no. 1-2, 83–93, 2-s2.0-37349092988, https://doi.org/10.1016/j.ijpharm.2007.07.044.
- 175 Bishop J. R. P., Nelson G., and Lamb J., Microencapsulation in yeast cells, Journal of Microencapsulation. (1998) 15, no. 6, 761–773, 2-s2.0-0031720903.
- 176 Hamad S. A., Stoyanov S. D., and Paunov V. N., Triggered cell release from shellac-cell composite microcapsules, Soft Matter. (2012) 8, no. 1, 5069–5077, https://doi.org/10.1039/c2sm07488e.
- 177 Esser-Kahn A. P., Sottos N. R., White S. R., and Moore J. S., Programmable microcapsules from self-immolative polymers, Journal of the American Chemical Society. (2010) 132, no. 30, 10266–10268, 2-s2.0-77955035977, https://doi.org/10.1021/ja104812p.
- 178 Lee M. H., Hribar K. C., Brugarolas T., Kamat N. P., Burdick J. A., and Lee D., Harnessing interfacial phenomena to program the release properties of hollow microcapsules, Advanced Functional Materials. (2012) 22, no. 1, 131–138, https://doi.org/10.1002/adfm.201101303.
- 179 Gao L., Fei J., Zhao J., Cui W., Cui Y., and Li J., pH- and redox-responsive polysaccharide-based microcapsules with autofluorescence for biomedical applications, Chemistry. (2012) 18, no. 11, 3185–3192, https://doi.org/10.1002/chem.201103584.
- 180 Ma M. Z., Cheng D. F., Ye J. H., Zhou Y., Wang J. X., Shi M. M., Han B. S., and Peng C. H., Microencapsulated tumor assay: evaluation of the nude mouse model of pancreatic cancer, World Journal of Gastroenterology. (2012) 18, no. 3, 257–267, https://doi.org/10.3748/wjg.v17.i3.257.
- 181 Zaytseva-Zotova D. S., Udartseva O. O., Andreeva E. R., Bartkowiak A., Bezdetnaya L. N., Guillemin F., Goergen J. L., and Markvicheva E. A., Polyelectrolyte microcapsules with entrapped multicellular tumor spheroids as a novel tool to study the effects of photodynamic therapy, Journal of Biomedical Materials Research Part B. (2011) 97, no. 2, 255–262, 2-s2.0-79953788295, https://doi.org/10.1002/jbm.b.31808.