Regulatory T Cells in HIV Infection: Can Immunotherapy Regulate the Regulator?
Mohammad-Ali Jenabian
Chronic Viral Illnesses Service, McGill University Health Centre, 3650 St. Urbain Street, Montreal, QC, Canada H2X 2P4, muhc.ca
Research Institute, McGill University Health Centre, Montreal, QC, Canada H3H 2R9, muhc.ca
Search for more papers by this authorPetronela Ancuta
Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada H3T 1J4, umontreal.ca
CHUM Research Center, Saint-Luc Hospital, Montreal, QC, Canada H2X 1P1, chumtl.qc.ca
Search for more papers by this authorNorbert Gilmore
Chronic Viral Illnesses Service, McGill University Health Centre, 3650 St. Urbain Street, Montreal, QC, Canada H2X 2P4, muhc.ca
Research Institute, McGill University Health Centre, Montreal, QC, Canada H3H 2R9, muhc.ca
Search for more papers by this authorCorresponding Author
Jean-Pierre Routy
Chronic Viral Illnesses Service, McGill University Health Centre, 3650 St. Urbain Street, Montreal, QC, Canada H2X 2P4, muhc.ca
Research Institute, McGill University Health Centre, Montreal, QC, Canada H3H 2R9, muhc.ca
Search for more papers by this authorMohammad-Ali Jenabian
Chronic Viral Illnesses Service, McGill University Health Centre, 3650 St. Urbain Street, Montreal, QC, Canada H2X 2P4, muhc.ca
Research Institute, McGill University Health Centre, Montreal, QC, Canada H3H 2R9, muhc.ca
Search for more papers by this authorPetronela Ancuta
Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada H3T 1J4, umontreal.ca
CHUM Research Center, Saint-Luc Hospital, Montreal, QC, Canada H2X 1P1, chumtl.qc.ca
Search for more papers by this authorNorbert Gilmore
Chronic Viral Illnesses Service, McGill University Health Centre, 3650 St. Urbain Street, Montreal, QC, Canada H2X 2P4, muhc.ca
Research Institute, McGill University Health Centre, Montreal, QC, Canada H3H 2R9, muhc.ca
Search for more papers by this authorCorresponding Author
Jean-Pierre Routy
Chronic Viral Illnesses Service, McGill University Health Centre, 3650 St. Urbain Street, Montreal, QC, Canada H2X 2P4, muhc.ca
Research Institute, McGill University Health Centre, Montreal, QC, Canada H3H 2R9, muhc.ca
Search for more papers by this authorAbstract
Regulatory T cells (Tregs) have a dominant role in self-tolerance and control of autoimmune diseases. These cells also play a pivotal role in chronic viral infections and cancer by limiting immune activation and specific immune response. The role of Tregs in HIV pathogenesis remains poorly understood as their function, changes according to the phases of infection. Tregs can suppress anti-HIV specific responses and conversely can have a beneficial role by reducing the deleterious impact of immune activation. We review the frequency, function and homing potential of Tregs in the blood and lymphoid tissues as well as their interaction with dendritic cells in the context of HIV infection. We also examine the new insights generated by recombinant IL-2 and IL-7 clinical trials in HIV-infected adults, including the immunomodulatory effects of Tregs. Based on their detrimental role in limiting anti-HIV responses, we propose Tregs as potential targets for immunotherapeutic strategies aimed at decreasing Tregs frequency and/or immunosuppressive function. However, such approaches require a better understanding of the time upon infection when interfering with Treg function may not cause a deleterious state of hyperimmune activation.
References
- 1 Chinen T., Volchkov P. Y., Chervonsky A. V., and Rudensky A. Y., A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota, Journal of Experimental Medicine. (2010) 207, no. 11, 2323–2330, 2-s2.0-78149310029, https://doi.org/10.1084/jem.20101235.
- 2 Baecher-Allan C. and Hafler D. A., Human regulatory T cells and their role in autoimmune disease, Immunological Reviews. (2006) 212, 203–216, 2-s2.0-33746356813, https://doi.org/10.1111/j.0105-2896.2006.00417.x.
- 3 Campbell D. J. and Koch M. A., Phenotypical and functional specialization of FOXP3+ regulatory T cells, Nature Reviews Immunology. (2011) 11, no. 2, 119–130, 2-s2.0-79251500661, https://doi.org/10.1038/nri2916.
- 4 Piccirillo C. A., Regulatory T cells in health and disease, Cytokine. (2008) 43, no. 3, 395–401, 2-s2.0-51349168951, https://doi.org/10.1016/j.cyto.2008.07.469.
- 5 Wang Y., Liu X. P., Zhao Z. B., Chen J. H., and Yu C. G., Expression of CD4+ forkhead box P3 (FOXP3)+ regulatory T cells in inflammatory bowel disease, Journal of Digestive Diseases. (2011) 12, no. 4, 286–294, 2-s2.0-79960705112, https://doi.org/10.1111/j.1751-2980.2011.00505.x.
- 6 Sakaguchi S., Sakaguchi N., Asano M., Itoh M., and Toda M., Immunologic self-tolerance maintained by activated T cells expressing IL- 2 receptor α-chains (CD25): breakdown of a single mechanism of self- tolerance causes various autoimmune diseases, Journal of Immunology. (1995) 155, no. 3, 1151–1164, 2-s2.0-0029150110.
- 7 Baecher-Allan C., Brown J. A., Freeman G. J., and Hafler D. A., CD4+ CD25high regulatory cells in human peripheral blood, Journal of Immunology. (2001) 167, no. 3, 1245–1253, 2-s2.0-0035413350.
- 8 Yagi H., Nomura T., Nakamura K., Yamazaki S., Kitawaki T., Hori S., Maeda M., Onodera M., Uchiyama T., Fujii S., and Sakaguchi S., Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells, International Immunology. (2004) 16, no. 11, 1643–4656, 2-s2.0-8344275995, https://doi.org/10.1093/intimm/dxh165.
- 9 Liu W., Putnam A. L., Xu-yu Z., Szot G. L., Lee M. R., Zhu S., Gottlieb P. A., Kapranov P., Gingeras T. R., De S. G. B. F., Clayberger C., Soper D. M., Ziegler S. F., and Bluestone J. A., CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells, Journal of Experimental Medicine. (2006) 203, no. 7, 1701–1711, 2-s2.0-33745817085, https://doi.org/10.1084/jem.20060772.
- 10 Seddiki N., Santner-Nanan B., Martinson J., Zaunders J., Sasson S., Landay A., Solomon M., Selby W., Alexander S. I., Nanan R., Kelleher A., and De S. G. B. F., Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells, Journal of Experimental Medicine. (2006) 203, no. 7, 1693–1700, 2-s2.0-33745813929, https://doi.org/10.1084/jem.20060468.
- 11 Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A., Parizot C., Taflin C., Heike T., Valeyre D., Mathian A., Nakahata T., Yamaguchi T., Nomura T., Ono M., Amoura Z., Gorochov G., and Sakaguchi S., Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor, Immunity. (2009) 30, no. 6, 899–911, 2-s2.0-66949171924, https://doi.org/10.1016/j.immuni.2009.03.019.
- 12 Curotto de Lafaille M. A. and Lafaille J. J., Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor?, Immunity. (2009) 30, no. 5, 626–635, 2-s2.0-65549123867, https://doi.org/10.1016/j.immuni.2009.05.002.
- 13 Haas J., Fritzsching B., Trübswetter P., Korporal M., Milkova L., Fritz B., Vobis D., Krammer P. H., Suri-Payer E., and Wildemann B., Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines T reg dysfunction in multiple sclerosis, Journal of Immunology. (2007) 179, no. 2, 1322–1330, 2-s2.0-34548721641.
- 14 Vieira P. L., Christensen J. R., Minaee S., O′Neil E. J., Barrat F. J., Boonstra A., Barthlott T., Stockinger B., Wraith D. C., and O′Garra A., IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells, Journal of Immunology. (2004) 172, no. 10, 5986–5993, 2-s2.0-2442450433.
- 15 Weiner H. L., Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells, Immunological Reviews. (2001) 182, 207–214, 2-s2.0-0035186416, https://doi.org/10.1034/j.1600-065X.2001.1820117.x.
- 16 Deaglio S., Dwyer K. M., Gao W., Friedman D., Usheva A., Erat A., Chen J. F., Enjyoji K., Linden J., Oukka M., Kuchroo V. K., Strom T. B., and Robson S. C., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression, Journal of Experimental Medicine. (2007) 204, no. 6, 1257–1265, 2-s2.0-34250351459, https://doi.org/10.1084/jem.20062512.
- 17 Mucida D., Park Y., Kim G., Turovskaya O., Scott I., Kronenberg M., and Cheroutre H., Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid, Science. (2007) 317, no. 5835, 256–260, 2-s2.0-34447503805, https://doi.org/10.1126/science.1145697.
- 18 Strisciuglio C. and van Deventer S., Regulatory T cells as potential targets for immunotherapy in inflammatory bowel disease, Immunotherapy. (2010) 2, no. 6, 749–752, 2-s2.0-78649511214, https://doi.org/10.2217/imt.10.63.
- 19 Lu Y., Giver C.R., Sharma A. et al., IFN-gamma and indoleamine 2, 3-dioxygenase signaling between donor dendritic cells and T cells regulates graft versus host and graft versus leukemia activity, Blood. (2012) 119, no. 4, 1075–1085, https://doi.org/10.1182/blood-2010-12-322891.
- 20 Wei S., Kryczek I., and Zou W., Regulatory T-cell compartmentalization and trafficking, Blood. (2006) 108, no. 2, 426–431, 2-s2.0-33745968543, https://doi.org/10.1182/blood-2006-01-0177.
- 21 Sather B. D., Treuting P., Perdue N., Miazgowicz M., Fontenot J. D., Rudensky A. Y., and Campbell D. J., Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease, Journal of Experimental Medicine. (2007) 204, no. 6, 1335–1347, 2-s2.0-34250336452, https://doi.org/10.1084/jem.20070081.
- 22 Guo Z., Jang M. H., Otani K., Bai Z., Umemoto E., Matsumoto M., Nishiyama M., Yamasaki M., Ueha S., Matsushima K., Hirata T., and Miyasaka M., CD4+CD25+ regulatory T cells in the small intestinal lamina propria show an effector/memory phenotype, International Immunology. (2008) 20, no. 3, 307–315, 2-s2.0-40049110259, https://doi.org/10.1093/intimm/dxm143.
- 23 Lee J. H., Kang S. G., and Kim C. H., FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues, Journal of Immunology. (2007) 178, no. 1, 301–311, 2-s2.0-33845944537.
- 24 Rosenblum M. D., Gratz I. K., Paw J. S. et al., Response to self antigen imprints regulatory memory in tissues, Nature. (2011) 480, no. 7378, 538–542, https://doi.org/10.1038/nature10664.
- 25 Yang X. O., Nurieva R., Martinez G. J., Kang H. S., Chung Y., Pappu B. P., Shah B., Chang S. H., Schluns K. S., Watowich S. S., Feng X. H., Jetten A. M., and Dong C., Molecular antagonism and plasticity of regulatory and inflammatory T cell programs, Immunity. (2008) 29, no. 1, 44–56, 2-s2.0-46749138596, https://doi.org/10.1016/j.immuni.2008.05.007.
- 26 Thornton A. M., Piccirillo C. A., and Shevach E. M., Activation requirements for the induction of CD4+CD25+ T cell suppressor function, European Journal of Immunology. (2004) 34, no. 2, 366–376, 2-s2.0-1642390941, https://doi.org/10.1002/eji.200324455.
- 27 Borsellino G., Kleinewietfeld M., Di Mitri D., Sternjak A., Diamantini A., Giometto R., Höpner S., Centonze D., Bernardi G., Dell′Acqua M. L., Rossini P. M., Battistini L., Rötzschke O., and Falk K., Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression, Blood. (2007) 110, no. 4, 1225–1232, 2-s2.0-34547098277, https://doi.org/10.1182/blood-2006-12-064527.
- 28 Castellani M. L., Anogeianaki A., Felaco P., Toniato E., de Lutiis M. A., Shaik B., Fulcheri M., Vecchiet J., Tetè S., Salini V., Theoharides T. C., Caraffa A., Antinolfi P., Frydas I., Conti P., Cuccurullo C., Ciampoli C., Cerulli G., and Kempuraj D., Il-35, an anti-inflammatory cytokine which expands CD4+CD25+ Treg cells, Journal of Biological Regulators and Homeostatic Agents. (2010) 24, no. 2, 131–135, 2-s2.0-77955857307.
- 29 Löhning M., Hutloff A., Kallinich T., Mages H. W., Bonhagen K., Radbruch A., Hamelmann E., and Kroczek R. A., Expression of ICOS In vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10, Journal of Experimental Medicine. (2003) 197, no. 2, 181–193, 2-s2.0-0037455003, https://doi.org/10.1084/jem.20020632.
- 30 Burmeister Y., Lischke T., Dahler A. C., Mages H. W., Lam K. P., Coyle A. J., Kroczek R. A., and Hutloff A., ICOS controls the pool size of effector-memory and regulatory T cells, Journal of Immunology. (2008) 180, no. 2, 774–782, 2-s2.0-40449116396.
- 31 Bianchini R., Bistoni O., Alunno A., Petrillo M. G., Ronchetti S., Sportoletti P., Bocci E. B., Nocentini G., Gerli R., and Riccardi C., CD4+CD25lowGITR+ cells: a novel human CD4+ T-cell population with regulatory activity, European Journal of Immunology. (2011) 41, no. 8, 2269–2278, 2-s2.0-79960718028, https://doi.org/10.1002/eji.201040943.
- 32 Libera D. D., Di Mitri D., Bergami A., Centonze D., Gasperini C., Grasso M. G., Galgani S., Martinelli V., Comi G., Avolio C., Martino G., Borsellino G., Sallusto F., Battistini L., and Furlan R., T regulatory cells are markers of disease activity in multiple sclerosis patients, PLoS ONE. (2011) 6, no. 6, 2-s2.0-79959770302, https://doi.org/10.1371/journal.pone.0021386, e21386.
- 33 Alexander C. M., Tygrett L. T., Boyden A. W., Wolniak K. L., Legge K. L., and Waldschmidt T. J., T regulatory cells participate in the control of germinal centre reactions, Immunology. (2011) 133, no. 4, 452–468, 2-s2.0-79959905757, https://doi.org/10.1111/j.1365-2567.2011.03456.x.
- 34 Zanin-Zhorov A., Ding Y., Kumari S. et al., Protein kinase C-θ mediates negative feedback on regulatory T cell function, Science. (2010) 328, no. 5976, 372–376, https://doi.org/10.1126/science.1186068.
- 35 Sarris M. and Betz A. G., Live imaging of dendritic cell-Treg cell interactions, Methods in Molecular Biology. (2011) 707, 83–101, 2-s2.0-79955699753, https://doi.org/10.1007/978-1-61737-979-6_7.
- 36 Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., Nomura T., and Sakaguchi S., CTLA-4 control over Foxp3+ regulatory T cell function, Science. (2008) 322, no. 5899, 271–275, 2-s2.0-53749094183, https://doi.org/10.1126/science.1160062.
- 37 Hryniewicz A., Boasso A., Edghill-Smith Y. et al., CTLA-4 blockade decreases TGF-β, IDO, and viral RNA expression in tissues of SIVmac251-infected macaques, Blood. (2006) 108, no. 12, 3834–3842, https://doi.org/10.1182/blood-2006-04-010637.
- 38 Cao X., Cai S. F., Fehniger T. A., Song J., Collins L. I., Piwnica-Worms D. R., and Ley T. J., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance, Immunity. (2007) 27, no. 4, 635–646, 2-s2.0-35449006679, https://doi.org/10.1016/j.immuni.2007.08.014.
- 39 Loebbermann J., Thornton H., Durant L. et al., Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection, Mucosal Immunology. (2012) 5, no. 2, 161–172, https://doi.org/10.1038/mi.2011.62.
- 40 Ohta A. and Sitkovsky M., Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage, Nature. (2001) 414, no. 6866, 916–920, 2-s2.0-0035924320, https://doi.org/10.1038/414916a.
- 41 Sitkovsky M. V., Lukashev D., Apasov S., Kojima H., Koshiba M., Caldwell C., Ohta A., and Thiel M., Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors, Annual Review of Immunology. (2004) 22, 657–682, 2-s2.0-2542432162, https://doi.org/10.1146/annurev.immunol.22.012703.104731.
- 42 Ohta A., Ohta A., Madasu M., Kini R., Subramanian M., Goel N., and Sitkovsky M., A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments, Journal of Immunology. (2009) 183, no. 9, 5487–5493, 2-s2.0-77950249826, https://doi.org/10.4049/jimmunol.0901247.
- 43 Bettelli E., Dastrange M., and Oukka M., Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells, Proceedings of the National Academy of Sciences of the United States of America. (2005) 102, no. 14, 5138–5143, 2-s2.0-17044393922, https://doi.org/10.1073/pnas.0501675102.
- 44 Sakaguchi S., Yamaguchi T., Nomura T., and Ono M., Regulatory T cells and immune tolerance, Cell. (2008) 133, no. 5, 775–787, 2-s2.0-43949105866, https://doi.org/10.1016/j.cell.2008.05.009.
- 45 Wu Y., Borde M., Heissmeyer V., Feuerer M., Lapan A. D., Stroud J. C., Bates D. L., Guo L., Han A., Ziegler S. F., Mathis D., Benoist C., Chen L., and Rao A., FOXP3 controls regulatory T cell function through cooperation with NFAT, Cell. (2006) 126, no. 2, 375–387, 2-s2.0-33746228122, https://doi.org/10.1016/j.cell.2006.05.042.
- 46 Esposito M., Ruffini F., Bergami A., Garzetti L., Borsellino G., Battistini L., Martino G., and Furlan R., IL-17-and IFN-γ-secreting Foxp3+ T cells infiltrate the target tissue in experimental autoimmunity, Journal of Immunology. (2010) 185, no. 12, 7467–7473, 2-s2.0-78650655423, https://doi.org/10.4049/jimmunol.1001519.
- 47 Ben-Shoshan J., Maysel-Auslender S., Mor A., Keren G., and George J., Hypoxia controls CD4+ CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1α, European Journal of Immunology. (2008) 38, no. 9, 2412–2418, 2-s2.0-55249095393, https://doi.org/10.1002/eji.200838318.
- 48 Dang E. V., Barbi J., Yang H. Y. et al., Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1, Cell. (2011) 146, no. 5, 772–784, https://doi.org/10.1016/j.cell.2011.07.033.
- 49 Shi L. Z., Wang R., Huang G., Vogel P., Neale G., Green D. R., and Chi H., HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells, Journal of Experimental Medicine. (2011) 208, no. 7, 1367–1376, 2-s2.0-79960369458, https://doi.org/10.1084/jem.20110278.
- 50 Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., and Ho D. D., Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, Journal of Virology. (1994) 68, no. 7, 4650–4655, 2-s2.0-0028337166.
- 51 Trautmann L., Janbazian L., Chomont N., Said E. A., Gimmig S., Bessette B., Boulassel M. R., Delwart E., Sepulveda H., Balderas R. S., Routy J. P., Haddad E. K., and Sekaly R. P., Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction, Nature Medicine. (2006) 12, no. 10, 1198–1202, 2-s2.0-33749009709, https://doi.org/10.1038/nm1482.
- 52 Lane H. C., Pathogenesis of HIV infection: total CD4+ T-cell pool, immune activation, and inflammation, Topics in HIV Medicine. (2010) 18, no. 1, 2–6, 2-s2.0-77952540443.
- 53 Chase A. J., Sedaghat A. R., German J. R., Gama L., Zink M. C., Clements J. E., and Siliciano R. F., Severe depletion of CD4+ CD25+ regulatory t cells from the intestinal lamina propria but not peripheral blood or lymph nodes during acute simian immunodeficiency virus infection, Journal of Virology. (2007) 81, no. 23, 12748–12757, 2-s2.0-36349005400, https://doi.org/10.1128/JVI.00841-07.
- 54 Genesca M., Ma Z. M., Wang Y. et al., Live-attenuated lentivirus immunization modulates innate immunity and inflammation while protecting RM from vaginal SIV challenge, Journal of Virology. (2012) 86, no. 17, 9188–9200.
- 55 Bluestone J. A., The Yin and Yang of interleukin-2—mediated immunotherapy, The New England Journal of Medicine. (2011) 365, no. 22, 2129–2131, 2-s2.0-82555192217.
- 56 Moreno-Fernandez M. E., Presicce P., and Chougnet C. A., Homeostasis and function of regulatory T cells in HIV/SIV infection, Journal of Virology. (2012) 86, no. 19, 10262–10269.
- 57 Presicce P., Orsborn K., King E., Pratt J., Fichtenbaum C. J., and Chougnet C. A., Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy, PLoS ONE. (2011) 6, no. 12, e28118, 2-s2.0-82655183583, https://doi.org/10.1371/journal.pone.0028118.
- 58 Bi X., Suzuki Y., Gatanaga H., and Oka S., High frequency and proliferation of CD4+FOXP3+ Treg in HIV-1-infected patients with low CD4 counts, European Journal of Immunology. (2009) 39, no. 1, 301–309, 2-s2.0-60549090886, https://doi.org/10.1002/eji.200838667.
- 59 Kared H., Lelièvre J. D., Donkova-Petrini V., Aouba A., Melica G., Balbo M., Weiss L., and Lévy Y., HIV-specific regulatory T cells are associated with higher CD4 cell counts in primary infection, AIDS. (2008) 22, no. 18, 2451–2460, 2-s2.0-57349175888, https://doi.org/10.1097/QAD.0b013e328319edc0.
- 60 Weiss L., Donkova-Petrini V., Caccavelli L., Balbo M., Carbonneil C., and Levy Y., Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients, Blood. (2004) 104, no. 10, 3249–3256, 2-s2.0-8644280556, https://doi.org/10.1182/blood-2004-01-0365.
- 61 Shaw J. M., Hunt P. W., Critchfield J. W., McConnell D. H., Garcia J. C., Pollard R. B., Somsouk M., Deeks S. G., and Shacklett B. L., Increased frequency of regulatory t cells accompanies increased immune activation in rectal mucosae of HIV-positive noncontrollers, Journal of Virology. (2011) 85, no. 21, 11422–11434, 2-s2.0-80055115449, https://doi.org/10.1128/JVI.05608-11.
- 62 Aandahl E. M., Michaëlsson J., Moretto W. J., Hecht F. M., and Nixon D. F., Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens, Journal of Virology. (2004) 78, no. 5, 2454–2459, 2-s2.0-10744227590, https://doi.org/10.1128/JVI.78.5.2454-2459.2004.
- 63 Kinter A. L., Hennessey M., Bell A., Kern S., Lin Y., Daucher M., Planta M., McGlaughlin M., Jackson R., Ziegler S. F., and Fauci A. S., CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status, Journal of Experimental Medicine. (2004) 200, no. 3, 331–343, 2-s2.0-3543098686, https://doi.org/10.1084/jem.20032069.
- 64 Mendez-Lagares G., Pozo-Balado M. M., Genebat M. et al., Severe immune dysregulation affects CD4+CD25hiFoxP3+ regulatory T cells in HIV-infected patients with low-level CD4 T-cell repopulation despite suppressive highly active antiretroviral therapy, Journal of Infectious Diseases. (2012) 205, no. 10, 1501–1509, https://doi.org/10.1093/infdis/jis230.
- 65 Nikolova M., Carriere M., Jenabian M. A., Limou S., Younas M., Kök A., Huë S., Seddiki N., Hulin A., Delaneau O., Schuitemaker H., Herbeck J. T., Mullins J. I., Muhtarova M., Bensussan A., Zagury J. F., Lelievre J. D., and Lévy Y., CD39/adenosine pathway is involved in AIDS progression, PLoS Pathogens. (2011) 7, no. 7, 2-s2.0-79960931448, https://doi.org/10.1371/journal.ppat.1002110, e1002110.
- 66 Schulze Zur Wiesch J., Thomssen A., Hartjen P., Tóth I., Lehmann C., Meyer-Olson D., Colberg K., Frerk S., Babikir D., Schmiedel S., Degen O., Mauss S., Rockstroh J., Staszewski S., Khaykin P., Strasak A., Lohse A. W., Fätkenheuer G., Hauber J., and van Lunzen J., Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease, Journal of Virology. (2011) 85, no. 3, 1287–1297, 2-s2.0-78651396992, https://doi.org/10.1128/JVI.01758-10.
- 67 Jenabian M. A., Yatim A., Carriere M. et al., Effect of the CD39/Adenosine enzymatic pathway on the inhibitory effect of regulatory T cells (Treg) through suppression of IL-2 production in HIV-1 infection, Proceedings of the 19th Conference on Retroviruses and Opportunistic Infections, 2012, Seattle, Wash, USA.
- 68 Belkaid Y. and Rouse B. T., Natural regulatory T cells in infectious disease, Nature Immunology. (2005) 6, no. 4, 353–360, 2-s2.0-16844369607, https://doi.org/10.1038/ni1181.
- 69 de St Groth B. F. and Landay A. L., Regulatory T cells in HIV infection: pathogenic or protective participants in the immune response?, AIDS. (2008) 22, no. 6, 671–683, 2-s2.0-41349101159, https://doi.org/10.1097/QAD.0b013e3282f466da.
- 70 Moreno-Fernandez M. E., Rueda C. M., Rusie L. K., and Chougnet C. A., Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism, Blood. (2011) 117, no. 20, 5372–5380, 2-s2.0-79956339815, https://doi.org/10.1182/blood-2010-12-323162.
- 71 Card C. M., McLaren P. J., Wachihi C., Kimani J., Plummer F. A., and Fowke K. R., Decreased immune activation in resistance to HIV-1 infection is associated with an elevated frequency of CD4+CD25+FOXP3+ regulatory T cells, Journal of Infectious Diseases. (2009) 199, no. 9, 1318–1322, 2-s2.0-65649106139, https://doi.org/10.1086/597801.
- 72 Brandt L., Benfield T., Mens H., Clausen L. N., Katzenstein T. L., Fomsgaard A., and Karlsson I., Low level of regulatory T cells and maintenance of balance between regulatory T cells and TH17 cells in HIV-1-infected elite controllers, Journal of Acquired Immune Deficiency Syndromes. (2011) 57, no. 2, 101–108, 2-s2.0-79957940672, https://doi.org/10.1097/QAI.0b013e318215a991.
- 73 Li L., Liu Y., Bao Z., Chen L., Wang Z., Li T., Li H., Zhuang D., Liu S., Wang X., and Li J., Analysis of CD4+CD25+Foxp3+ regulatory T cells in HIV-exposed seronegative persons and HIV-infected persons with different disease progressions, Viral Immunology. (2011) 24, no. 1, 57–60, 2-s2.0-79951797419, https://doi.org/10.1089/vim.2010.0079.
- 74 Hunt P. W., Landay A. L., Sinclair E., Martinson J. A., Hatano H., Emu B., Norris P. J., Busch M. P., Martin J. N., Brooks C., McCune J. M., and Deeks S. G., A low T regulatory cell response may contribute to both viral control and generalized immune activation in HIV controllers, PLoS ONE. (2011) 6, no. 1, 2-s2.0-79551649723, https://doi.org/10.1371/journal.pone.0015924, e15924.
- 75 Angin M., Kwon D. S., Streeck H., Wen F., King M., Rezai A., Law K., Hongo T. C., Pyo A., Piechocka-Trocha A., Toth I., Pereyra F., Ghebremichael M., Rodig S. J., Milner Jr. D. A., Richter J. M., Altfeld M., Kaufmann D. E., Walker B. D., and Addo M. M., Preserved function of regulatory T cells in chronic HIV-1 infection despite decreased numbers in blood and tissue, Journal of Infectious Diseases. (2012) 205, no. 10, 1495–1500, 2-s2.0-84860359331, https://doi.org/10.1093/infdis/jis236.
- 76 Elahi S., Dinges W. L., Lejarcegui N., Laing K. J., Collier A. C., Koelle D. M., McElrath M. J., and Horton H., Protective HIV-specific CD8+ T cells evade T reg cell suppression, Nature Medicine. (2011) 17, no. 8, 989–995, 2-s2.0-79961160736, https://doi.org/10.1038/nm.2422.
- 77 Ancuta P., Monteiro P., and Sekaly R. P., Th17 lineage commitment and HIV-1 pathogenesis, Current Opinion in HIV and AIDS. (2010) 5, no. 2, 158–165, 2-s2.0-76949097773, https://doi.org/10.1097/COH.0b013e3283364733.
- 78 Quintana F. J., Basso A. S., Iglesias A. H., Korn T., Farez M. F., Bettelli E., Caccamo M., Oukka M., and Weiner H. L., Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor, Nature. (2008) 453, no. 7191, 65–71, 2-s2.0-42649095378, https://doi.org/10.1038/nature06880.
- 79 Chege D., Sheth P. M., Kain T., Kim C. J., Kovacs C., Loutfy M., Halpenny R., Kandel G., Chun T. W., Ostrowski M., Kaul R., Yi T. J., Huibner S., Mujib S., Persad D., and Benko E., Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy, AIDS. (2011) 25, no. 6, 741–749, 2-s2.0-79953735335, https://doi.org/10.1097/QAD.0b013e328344cefb.
- 80 Brenchley J. M., Price D. A., Schacker T. W., Asher T. E., Silvestri G., Rao S., Kazzaz Z., Bornstein E., Lambotte O., Altmann D., Blazar B. R., Rodriguez B., Teixeira-Johnson L., Landay A., Martin J. N., Hecht F. M., Picker L. J., Lederman M. M., Deeks S. G., and Douek D. C., Microbial translocation is a cause of systemic immune activation in chronic HIV infection, Nature Medicine. (2006) 12, no. 12, 1365–1371, 2-s2.0-33845532053, https://doi.org/10.1038/nm1511.
- 81 Kanwar B., Favre D., and McCune J. M., Th17 and regulatory T cells: implications for AIDS pathogenesis, Current Opinion in HIV and AIDS. (2010) 5, no. 2, 151–157, 2-s2.0-76949108202, https://doi.org/10.1097/COH.0b013e328335c0c1.
- 82 de Luca A., Montagnoli C., Zelante T., Bonifazi P., Bozza S., Moretti S., D′Angelo C., Vacca C., Boon L., Bistoni F., Puccetti P., Fallarino F., and Romani L., Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc, Journal of Immunology. (2007) 179, no. 9, 5999–6008, 2-s2.0-37349076668.
- 83 Ivanov I. I., McKenzie B. S., Zhou L., Tadokoro C. E., Lepelley A., Lafaille J. J., Cua D. J., and Littman D. R., The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells, Cell. (2006) 126, no. 6, 1121–1133, 2-s2.0-33748588423, https://doi.org/10.1016/j.cell.2006.07.035.
- 84 Romani L., Fallarino F., de Luca A., Montagnoli C., D′Angelo C., Zelante T., Vacca C., Bistoni F., Fioretti M. C., Grohmann U., Segal B. H., and Puccetti P., Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease, Nature. (2008) 451, no. 7175, 211–215, 2-s2.0-38049115134, https://doi.org/10.1038/nature06471.
- 85 Romani L., Zelante T., de Luca A., Fallarino F., and Puccetti P., IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi, Journal of Immunology. (2008) 180, no. 8, 5157–5162, 2-s2.0-45949104818.
- 86 Baban B., Chandler P. R., Sharma M. D., Pihkala J., Koni P. A., Munn D. H., and Mellor A. L., IDO activates regulatory T cells and blocks their conversion into Th17-like T cells, Journal of Immunology. (2009) 183, no. 4, 2475–2483, 2-s2.0-70149101645, https://doi.org/10.4049/jimmunol.0900986.
- 87 Sharma M. D., Hou D. Y., Liu Y., Koni P. A., Metz R., Chandler P., Mellor A. L., He Y., and Munn D. H., Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes, Blood. (2009) 113, no. 24, 6102–6111, 2-s2.0-67650351923, https://doi.org/10.1182/blood-2008-12-195354.
- 88 Zelante T., Fallarino F., Bistoni F., Puccetti P., and Romani L., Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host, Microbes and Infection. (2009) 11, no. 1, 133–141, 2-s2.0-58249103970, https://doi.org/10.1016/j.micinf.2008.10.007.
- 89 Favre D., Mold J., Hunt P. W., Kanwar B., Loke P., Seu L., Barbour J. D., Lowe M. M., Jayawardene A., Aweeka F., Huang Y., Douek D. C., Brenchley J. M., Martin J. N., Hecht F. M., Deeks S. G., and McCune J. M., Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease, Science Translational Medicine. (2010) 2, no. 32, 32ra36, 2-s2.0-77952977625, https://doi.org/10.1126/scitranslmed.3000632.
- 90 Favre D., Lederer S., Kanwar B., Ma Z. M., Proll S., Kasakow Z., Mold J., Swainson L., Barbour J. D., Baskin C. R., Palermo R., Pandrea I., Miller C. J., Katze M. G., and McCune J. M., Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection, PLoS Pathogens. (2009) 5, no. 2, 2-s2.0-61449115882, https://doi.org/10.1371/journal.ppat.1000295, e1000295.
- 91 Patel M., Jenabian M. A., Lebouché B. et al., Elite conrollers show a unique Tryptophan immunosuppressive catabolism, Proceedings of the 19th International AIDS Conference, 2012, Washington DC, USA.
- 92 Nan X. P., Zhang Y., Yu H. T., Sun R. L., Peng M. J., Li Y., Su W. J., Lian J. Q., Wang J. P., and Bai X. F., Inhibition of viral replication downregulates CD4+CD25high regulatory T cells and programmed death-ligand 1 in chronic hepatitis B, Viral Immunology. (2012) 25, no. 1, 21–28, 2-s2.0-84863011093, https://doi.org/10.1089/vim.2011.0049.
- 93 Weiss L., Piketty C., Assoumou L., Didier C., Caccavelli L., Donkova-Petrini V., Levy Y., Girard P. M., Burgard M., Viard J. P., Rouzioux C., and Costagliola D., Relationship between regulatory T cells and immune activation in human immunodeficiency virus-infected patients interrupting antiretroviral therapy, PLoS ONE. (2010) 5, no. 7, 2-s2.0-77955351656, https://doi.org/10.1371/journal.pone.0011659, e11659.
- 94 Brenchley J. M., Paiardini M., Knox K. S., Asher A. I., Cervasi B., Asher T. E., Scheinberg P., Price D. A., Hage C. A., Kholi L. M., Khoruts A., Frank I., Else J., Schacker T., Silvestri G., and Douek D. C., Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections, Blood. (2008) 112, no. 7, 2826–2835, 2-s2.0-53449093632, https://doi.org/10.1182/blood-2008-05-159301.
- 95 Macal M., Sankaran S., Chun T. W., Reay E., Flamm J., Prindiville T. J., and Dandekar S., Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses, Mucosal Immunology. (2008) 1, no. 6, 475–488, 2-s2.0-54449084622, https://doi.org/10.1038/mi.2008.35.
- 96 Curran M. A., Montalvo W., Yagita H., and Allison J. P., PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors, Proceedings of the National Academy of Sciences of the United States of America. (2010) 107, no. 9, 4275–4280, 2-s2.0-77749279776, https://doi.org/10.1073/pnas.0915174107.
- 97 Franceschini D., Paroli M., Francavilla V., Videtta M., Morrone S., Labbadia G., Cerino A., Mondelli M. U., and Barnaba V., PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV, Journal of Clinical Investigation. (2009) 119, no. 3, 551–564, 2-s2.0-65649139622, https://doi.org/10.1172/JCI36604.
- 98 Ni L., Ma C. J., Zhang Y., Nandakumar S., Zhang C. L., Wu X. Y., Borthwick T., Hamati A., Chen X. Y., Kumaraguru U., Moorman J. P., and Yao Z. Q., PD-1 modulates regulatory T cells and suppresses T-cell responses in HCV-associated lymphoma, Immunology and Cell Biology. (2011) 89, no. 4, 535–539, 2-s2.0-79955783905, https://doi.org/10.1038/icb.2010.121.
- 99 Day C. L., Kaufmann D. E., Kiepiela P., Brown J. A., Moodley E. S., Reddy S., Mackey E. W., Miller J. D., Leslie A. J., DePierres C., Mncube Z., Duraiswamy J., Zhu B., Eichbaum Q., Altfeld M., Wherry E. J., Coovadia H. M., Goulder P. J. R., Klenerman P., Ahmed R., Freeman G. J., and Walker B. D., PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression, Nature. (2006) 443, no. 7109, 350–354, 2-s2.0-33748947326, https://doi.org/10.1038/nature05115.
- 100 Said E. A., Dupuy F. P., Trautmann L., Zhang Y., Shi Y., El-Far M., Hill B. J., Noto A., Ancuta P., Peretz Y., Fonseca S. G., van Grevenynghe J., Boulassel M. R., Bruneau J., Shoukry N. H., Routy J. P., Douek D. C., Haddad E. K., and Sekaly R. P., Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection, Nature Medicine. (2010) 16, no. 4, 452–459, 2-s2.0-77950525439, https://doi.org/10.1038/nm.2106.
- 101 Rueda C. M., Velilla P. A., Chougnet C. A., Montoya C. J., and Rugeles M. T., HIV-induced T-cell activation/exhaustion in rectal mucosa is controlled only partially by antiretroviral treatment, PLoS ONE. (2012) 7, no. 1, Article numbere30307, 2-s2.0-84856016549, https://doi.org/10.1371/journal.pone.0030307.
- 102 Amarnath S., Costanzo C. M., Mariotti J., Ullman J. L., Telford W. G., Kapoor V., Riley J. L., Levine B. L., June C. H., Fong T., Warner N. L., and Fowler D. H., Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1, PLoS Biology. (2010) 8, no. 2, 2-s2.0-77649163290, https://doi.org/10.1371/journal.pbio.1000302, e1000302.
- 103 Amarnath S., Mangus C. W., Wang J. C. M. et al., The PDL1-PD1 axis converts human TH1 cells into regulatory T cells, Science Translational Medicine. (2011) 3, no. 111, 111ra120, https://doi.org/10.1126/scitranslmed.3003130.
- 104 Linterman M. A., Pierson W., Lee S. K., Kallies A., Kawamoto S., Rayner T. F., Srivastava M., Divekar D. P., Beaton L., Hogan J. J., Fagarasan S., Liston A., Smith K. G. C., and Vinuesa C. G., Foxp3+ follicular regulatory T cells control the germinal center response, Nature Medicine. (2011) 17, no. 8, 975–982, 2-s2.0-79961151137, https://doi.org/10.1038/nm.2425.
- 105 Munn D. H., Blocking IDO activity to enhance anti-tumor immunity, Frontiers in Bioscience (Elite Edition). (2012) 4, 734–745.
- 106 Opitz C. A., Litzenburger U. M., Opitz U., Sahm F., Ochs K., Lutz C., Wick W., and Platten M., The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan upregulates IDO1 in human cancer cells, PLoS ONE. (2011) 6, no. 5, 2-s2.0-79956302084, https://doi.org/10.1371/journal.pone.0019823, e19823.
- 107 Potula R., Poluektova L., Knipe B., Chrastil J., Heilman D., Dou H., Takikawa O., Munn D. H., Gendelman H. E., and Persidsky Y., Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis, Blood. (2005) 106, no. 7, 2382–2390, 2-s2.0-27144489077, https://doi.org/10.1182/blood-2005-04-1403.
- 108 Boasso A., Vaccari M., Fuchs D., Hardy A. W., Tsai W. P., Tryniszewska E., Shearer G. M., and Franchini G., Combined effect of antiretroviral therapy and blockade of IDO in SIV-infected rhesus macaques, Journal of Immunology. (2009) 182, no. 7, 4313–4320, 2-s2.0-64249110601, https://doi.org/10.4049/jimmunol.0803314.
- 109 Vaccari M., Boasso A., Fenizia C., Fuchs D., Hryniewicz A., Morgan T., Weiss D., Doster M. N., Heraud J. M., Shearer G. M., and Franchini G., Fatal pancreatitis in simian immunodeficiency virus SIVmac251-infected macaques treated with 2′,3′-dideoxyinosine and stavudine following cytotoxic-T-lymphocyte-associated antigen 4 and indoleamine 2,3-dioxygenase blockade, Journal of Virology. (2012) 86, no. 1, 108–113, 2-s2.0-84855959941, https://doi.org/10.1128/JVI.05609-11.
- 110 García F. and Routy J. P., Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection. Workshop in dendritic cell-based vaccine clinical trials in HIV-1, Vaccine. (2011) 29, no. 38, 6454–6463, 2-s2.0-79960865428, https://doi.org/10.1016/j.vaccine.2011.07.043.
- 111 Lu W., Wu X., Lu Y., Guo W., and Andrieu J. M., Therapeutic dendritic-cell vaccine for simian aids, Nature Medicine. (2003) 9, no. 1, 27–32, 2-s2.0-0037234103, https://doi.org/10.1038/nm806.
- 112 Lu W., Arraes L. C., Ferreira W. T., and Andrieu J. M., Therapeutic dendritic-cell vaccine for chronic HIV-1 infection, Nature Medicine. (2004) 10, no. 12, 1359–1365, 2-s2.0-11144283687, https://doi.org/10.1038/nm1147.
- 113 Routy J. P., Boulassel M. R., Yassine-Diab B., Nicolette C., Healey D., Jain R., Landry C., Yegorov O., Tcherepanova I., Monesmith T., Finke L., and Sékaly R. P., Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy, Clinical Immunology. (2010) 134, no. 2, 140–147, 2-s2.0-73549125003, https://doi.org/10.1016/j.clim.2009.09.009.
- 114 Liao W., Lin J. X., Wang L., Li P., and Leonard W. J., Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages, Nature Immunology. (2011) 12, no. 6, 551–559, 2-s2.0-79956085895, https://doi.org/10.1038/ni.2030.
- 115 Malek T. R., The biology of interleukin-2, Annual Review of Immunology. (2008) 26, 453–479, 2-s2.0-41949097030, https://doi.org/10.1146/annurev.immunol.26.021607.090357.
- 116 Yang X. P., Ghoreschi K., Steward-Tharp S. M., Rodriguez-Canales J., Zhu J., Grainger J. R., Hirahara K., Sun H. W., Wei L., Vahedi G., Kanno Y., O′Shea J. J., and Laurence A., Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5, Nature Immunology. (2011) 12, no. 3, 247–254, 2-s2.0-79951682333, https://doi.org/10.1038/ni.1995.
- 117 Cheng G., Yu A., and Malek T. R., T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells, Immunological Reviews. (2011) 241, no. 1, 63–76, 2-s2.0-79954559096, https://doi.org/10.1111/j.1600-065X.2011.01004.x.
- 118 Malek T. R., Yu A., Vincek V., Scibelli P., and Kong L., CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice: implications for the nonredundant function of IL-2, Immunity. (2002) 17, no. 2, 167–178, 2-s2.0-0036669298, https://doi.org/10.1016/S1074-7613(02)00367-9.
- 119 Xue H. H., Kovanen P. E., Pise-Masison C. A., Berg M., Radovich M. F., Brady J. N., and Leonard W. J., Il-2 negatively regulates IL-7 receptor α chain expression in activated T lymphocytes, Proceedings of the National Academy of Sciences of the United States of America. (2002) 99, no. 21, 13759–13764, 2-s2.0-0037109077, https://doi.org/10.1073/pnas.212214999.
- 120
Wolf M.,
Schimpl A., and
Hünig T., Control of T cell hyperactivation in IL-2-deficient mice by CD4+CD25- and CD4+CD25+ T cells: evidence for two distinct regulatory mechanisms, European Journal of Immunology. (2001) 31, no. 6, 1637–1645, 2-s2.0-0034965185, https://doi.org/10.1002/1521-4141(200106)31:6<1637::AID-IMMU1637>3.0.CO;2-T.
10.1002/1521-4141(200106)31:6<1637::AID-IMMU1637>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 121 Czystowska M., Strauss L., Bergmann C., Szajnik M., Rabinowich H., and Whiteside T. L., Reciprocal granzyme/perforin-mediated death of human regulatory and responder T cells is regulated by interleukin-2 (IL-2), Journal of Molecular Medicine. (2010) 88, no. 6, 577–588, 2-s2.0-77954564039, https://doi.org/10.1007/s00109-010-0602-9.
- 122 Abrams D., Lévy Y., Losso M. H., Babiker A., Collins G., Cooper D. A., Darbyshire J., Emery S., Fox L., Gordin F., Lane H. C., Lundgren J. D., Mitsuyasu R., Neaton J. D., Phillips A., Routy J. P., Tambussi G., and Wentworth D., Interleukin-2 therapy in patients with HIV infection, The New England Journal of Medicine. (2009) 361, no. 16, 1548–1559, 2-s2.0-74849114986, https://doi.org/10.1056/NEJMoa0903175.
- 123 Weiss L., Letimier F. A., Carriere M., Maiella S., Donkova-Petrini V., Targat B., Benecke A., Rogge L., and Levy Y., In vivo expansion of naive and activated CD4+CD25+FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients, Proceedings of the National Academy of Sciences of the United States of America. (2010) 107, no. 23, 10632–10637, 2-s2.0-77953748800, https://doi.org/10.1073/pnas.1000027107.
- 124 Saadoun D., Rosenzwajg M., Joly F., Six A., Carrat F., Thibault V., Sene D., Cacoub P., and Klatzmann D., Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis, The New England Journal of Medicine. (2011) 365, no. 22, 2067–2077, 2-s2.0-82555196118.
- 125 Beq S., Rozlan S., Gautier D., Parker R., Mersseman V., Schilte C., Assouline B., Rancé I., Lavedan P., Morre M., and Cheynier R., Injection of glycosylated recombinant simian IL-7 provokes rapid and massive T-cell homing in rhesus macaques, Blood. (2009) 114, no. 4, 816–825, 2-s2.0-68249151155, https://doi.org/10.1182/blood-2008-11-191288.
- 126 Levy Y., Lacabaratz C., Weiss L., Viard J. P., Goujard C., Lelièvre J. D., Boué F., Molina J. M., Rouzioux C., Avettand-Fénoêl V., Croughs T., Beq S., Thiébaut R., Chêne G., Morre M., and Delfraissy J. F., Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment, Journal of Clinical Investigation. (2009) 119, no. 4, 997–1007, 2-s2.0-65249105408, https://doi.org/10.1172/JCI38052.
- 127 Rosenberg S. A., Sportès C., Ahmadzadeh M., Fry T. J., Ngo L. T., Schwarz S. L., Stetler-Stevenson M., Morton K. E., Mavroukakis S. A., Morre M., Buffet R., Mackall C. L., and Gress R. E., IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells, Journal of Immunotherapy. (2006) 29, no. 3, 313–319, 2-s2.0-33746046073, https://doi.org/10.1080/03601270600564088.
- 128 Ponchel F., Cuthbert R. J., and Goëb V., IL-7 and lymphopenia, Clinica Chimica Acta. (2011) 412, no. 1-2, 7–16, 2-s2.0-78650514849, https://doi.org/10.1016/j.cca.2010.09.002.
- 129 Beq S., Delfraissy J. F., and Theze J., Interleukin-7 (IL-7): immune function, involvement in the pathogenesis of HIV infection and therapeutic potential, European Cytokine Network. (2004) 15, no. 4, 279–289, 2-s2.0-12344251706.
- 130 Bolotin E., Annett G., Parkman R., and Weinberg K., Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count, Bone Marrow Transplantation. (1999) 23, no. 8, 783–788, 2-s2.0-0032946001.
- 131 Boulassel M. R., Mercier F., Gilmore N., and Routy J. P., Immunophenotypic patterns of CD8+ T cell subsets expressing CD8αα and IL-7Rα in viremic, aviremic and slow progressor HIV-1-infected subjects, Clinical Immunology. (2007) 124, no. 2, 149–157, 2-s2.0-34447322319, https://doi.org/10.1016/j.clim.2007.05.005.
- 132 Napolitano L. A., Grant R. M., Deeks S. G., Schmidt D., de Rosa S. C., Herzenberg L. A., Herndier B. G., Andersson J., and Mccune J. M., Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis, Nature Medicine. (2001) 7, no. 1, 73–79, 2-s2.0-0035138982, https://doi.org/10.1038/83381.
- 133 Rethi B., Vivar N., Sammicheli S., and Chiodi F., Limited efficiency of endogenous interleukin-7 levels in T cell reconstitution during HIV-1 infection: will exogenous interleukin-7 therapy work?, AIDS. (2009) 23, no. 7, 745–755, 2-s2.0-67649654090, https://doi.org/10.1097/QAD.0b013e3283298572.
- 134 Sereti I., Estes J., Thompson W. et al., Gut mucosa T lymphocyte restoration in chronically HIV+ patients treated with recombinant interleukin-7, Proceedings of the 19th Conference on Retroviruses and Opportunistic Infections, 2012, Seattle, Wash, USA.
- 135 Levy Y., Sereti I., Tambussi G. et al., Effects of rhIL-7 on T cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo controlled, multicenter study, Clinical Infectious Diseases. (2012) 55, no. 2, 291–300, https://doi.org/10.1093/cid/cis383.