Correlation between Quantumchemically Calculated LUMO Energies and the Electrochemical Window of Ionic Liquids with Reduction-Resistant Anions
Corresponding Author
Wim Buijs
Laboratory for Process Equipment, Department of Process & Energy, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands tudelft.nl
Search for more papers by this authorGeert-Jan Witkamp
Laboratory for Process Equipment, Department of Process & Energy, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands tudelft.nl
Search for more papers by this authorMaaike C. Kroon
Separation Technology Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, P.O. Box 513, STO 1.22, 5600 MB Eindhoven, The Netherlands tue.nl
Search for more papers by this authorCorresponding Author
Wim Buijs
Laboratory for Process Equipment, Department of Process & Energy, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands tudelft.nl
Search for more papers by this authorGeert-Jan Witkamp
Laboratory for Process Equipment, Department of Process & Energy, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands tudelft.nl
Search for more papers by this authorMaaike C. Kroon
Separation Technology Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, P.O. Box 513, STO 1.22, 5600 MB Eindhoven, The Netherlands tue.nl
Search for more papers by this authorAbstract
Quantum chemical calculations showed to be an excellent method to predict the electrochemical window of ionic liquids with reduction-resistant anions. A good correlation between the LUMO energy and the electrochemical window is observed. Surprisingly simple but very fast semiempirical calculations are in full record with density functional theory calculations and are a very attractive tool in the design and optimization of ionic liquids for specific purposes.
References
- 1 P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, 2003, Wiley-VCH, Weinheim, Germany.
- 2 Earle M. J. and Seddon K. R., Ionic liquids. Green solvents for the future, Pure and Applied Chemistry. (2000) 72, no. 7, 1391–1398, 2-s2.0-0034583251.
- 3 Huddleston J. G., Visser A. E., Reichert W. M., Willauer H. D., Broker G. A., and Rogers R. D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chemistry. (2001) 3, no. 4, 156–164, 2-s2.0-33644766490, https://doi.org/10.1039/b103275p.
- 4 Suarez P. A. Z., Selbach V. M., Dullius J. E. L., Einloft S., Piatnicki C. M. S., Azambuja D. S., De Souza R. F., and Dupont J., Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts, Electrochimica Acta. (1997) 42, no. 16, 2533–2535, 2-s2.0-0031336253.
- 5 Sun J., Forsyth M., and MacFarlane D. R., Room-temperature molten salts based on the quaternary ammonium ion, Journal of Physical Chemistry B. (1998) 102, no. 44, 8858–8864, 2-s2.0-0000661241.
- 6 Matsumoto K., Hagiwara R., and Ito Y., Room-temperature ionic liquids with high conductivities and wide electrochemical windows N-Alkyl-N-methylpyrrolidinium and N-Alkyl-N- methylpiperidinium fluorohydrogenates, Electrochemical and Solid-State Letters. (2004) 7, no. 11, E41–E44, 2-s2.0-10044251128, https://doi.org/10.1149/1.1813445.
- 7 Bonhôte P., Dias A. P., Papageorgiou N., Kalyanasundaram K., and Grätzel M., Hydrophobic, highly conductive ambient-temperature molten salts, Inorganic Chemistry. (1996) 35, no. 5, 1168–1178, 2-s2.0-0242626227.
- 8 Liao Q., Pitner W. R., Stewart G., Hussey C. L., and Stafford G. R., Electrodeposition of aluminum from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt + benzene, Journal of the Electrochemical Society. (1997) 144, no. 3, 936–943, 2-s2.0-0031098550.
- 9 Huang J. F. and Sun I. W., Electrodeposition of PtZn in a Lewis acidic ZnCl2-1-ethyl-3- methylimidazolium chloride ionic liquid, Electrochimica Acta. (2004) 49, no. 19, 3251–3258, 2-s2.0-2442593603, https://doi.org/10.1016/j.electacta.2004.02.039.
- 10 Chen P. Y., Lin Y. F., and Sun I. W., Electrochemistry of gallium in the Lewis acidic aluminum chloride-1-methyl-3-ethylimidazolium chloride room-temperature molten salt, Journal of the Electrochemical Society. (1999) 146, no. 9, 3290–3294, 2-s2.0-0033366302, https://doi.org/10.1149/1.1392469.
- 11 Freyland W., Zell C. A., Zein El Abedin S., and Endres F., Nanoscale electrodeposition of metals and semiconductors from ionic liquids, Electrochimica Acta. (2003) 48, no. 20–22, 3053–3061, 2-s2.0-0041467434, https://doi.org/10.1016/S0013-4686(03)00378-5.
- 12 Hagiwara R. and Ito Y., Room temperature ionic liquids of alkylimidazolium cations and fluoroanions, Journal of Fluorine Chemistry. (2000) 105, no. 2, 221–227, 2-s2.0-0042027235.
- 13 Sakaebe H. and Matsumoto H., N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)—novel electrolyte base for Li battery, Electrochemistry Communications. (2003) 5, no. 7, 594–598, 2-s2.0-0037478659, https://doi.org/10.1016/S1388-2481(03)00137-1.
- 14 Papageorgiou N., Athanassov Y., Armand M., Bonhôte P., Pettersson H., Azam A., and Grätzel M., The performance and stability of ambient temperature molten salts for solar cell applications, Journal of the Electrochemical Society. (1996) 143, no. 10, 3099–3108, 2-s2.0-0030259705.
- 15 McEwen A. B., Ngo H. L., LeCompte K., and Goldman J. L., Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, Journal of the Electrochemical Society. (1999) 146, no. 5, 1687–1695, 2-s2.0-0032665797, https://doi.org/10.1149/1.1391827.
- 16 Ue M., Takeda M., Toriumi A., Kominato A., Hagiwara R., and Ito Y., Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors, Journal of the Electrochemical Society. (2003) 150, no. 4, A499–A502, 2-s2.0-0037398395, https://doi.org/10.1149/1.1559069.
- 17 Sato T., Masuda G., and Takagi K., Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochimica Acta. (2004) 49, no. 21, 3603–3611, 2-s2.0-2942562656, https://doi.org/10.1016/j.electacta.2004.03.030.
- 18 Hehre W. J., A Guide to Molecular Mechanics and Quantum Chemical Calculations, 2003, Wavefunction, Irvine, Calif, USA.
- 19 Koch V. R., Dominey L. A., Nanjundiah C., and Ondrechen M. J., The intrinsic anodic stability of several anions comprising solvent-free ionic liquids, Journal of the Electrochemical Society. (1996) 143, no. 3, 798–803, 2-s2.0-0030106877.
- 20 Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, Calif, 92612, USA.
- 21 IUPAC—International Union of Pure and Applied Chemistry, Compendium of Chemical Terminology, 1997, 2nd edition, IUPAC—International Union of Pure and Applied Chemistry.
- 22 Meng Z., Dölle A., and Carper W. R., Gas phase model of an ionic liquid: semi-empirical and ab initio bonding and molecular structure, Journal of Molecular Structure. (2002) 585, 119–128, 2-s2.0-0037123799, https://doi.org/10.1016/S0166-1280(02)00056-8.
- 23 Katsyuba S. A., Dyson P. J., Vandyukova E. E., Chernova A. V., and Vidis A., Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-1H-imidazolium tetrafluoroborate, Helvetica Chimica Acta. (2004) 87, no. 10, 2556–2565, 2-s2.0-8644258190, https://doi.org/10.1002/hlca.200490228.
- 24 Forsyth S., Golding J., MacFarlane D. R., and Forsyth M., N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts: ionic solvents and solid electrolytes, Electrochimica Acta. (2001) 46, no. 10-11, 1753–1757, 2-s2.0-0035868489, https://doi.org/10.1016/S0013-4686(00)00781-7.
- 25 Fuller J., Carlin R. T., and Osteryoung R. A., The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties, Journal of the Electrochemical Society. (1997) 144, no. 11, 3881–3886, 2-s2.0-0031272874.
- 26 Schröder U., Wadhawan J. D., Compton R. G., Marken F., Suarez P. A. Z., Consorti C. S., De Souza R. F., and Dupont J., Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids, The New Journal of Chemistry. (2000) 24, no. 12, 1009–1015, 2-s2.0-0034533995, https://doi.org/10.1039/b007172m.
- 27 MacFarlane D. R., Meakin P., Sun J., Amini N., and Forsyth M., Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases, Journal of Physical Chemistry B. (1999) 103, no. 20, 4164–4170, 2-s2.0-0001293066.