New 4(3) Pairs Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs
Corresponding Author
Norazak Senu
Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia upm.edu.my
Search for more papers by this authorMohamed Suleiman
Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia upm.edu.my
Search for more papers by this authorFudziah Ismail
Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia upm.edu.my
Search for more papers by this authorNorihan Md Arifin
Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia upm.edu.my
Search for more papers by this authorCorresponding Author
Norazak Senu
Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia upm.edu.my
Search for more papers by this authorMohamed Suleiman
Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia upm.edu.my
Search for more papers by this authorFudziah Ismail
Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia upm.edu.my
Search for more papers by this authorNorihan Md Arifin
Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia upm.edu.my
Search for more papers by this authorAbstract
New 4(3) pairs Diagonally Implicit Runge-Kutta-Nyström (DIRKN) methods with reduced phase-lag are developed for the integration of initial value problems for second-order ordinary differential equations possessing oscillating solutions. Two DIRKN pairs which are three- and four-stage with high order of dispersion embedded with the third-order formula for the estimation of the local truncation error. These new methods are more efficient when compared with current methods of similar type and with the L-stable Runge-Kutta pair derived by Butcher and Chen (2000) for the numerical integration of second-order differential equations with periodic solutions.
References
- 1 van der Houwen P. J. and Sommeijer B. P., Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions, SIAM Journal on Numerical Analysis. (1987) 24, no. 3, 595–617, https://doi.org/10.1137/0724041, 888752, ZBL0624.65058.
- 2 van der Houwen P. J. and Sommeijer B. P., Diagonally implicit Runge-Kutta-Nyström methods for oscillatory problems, SIAM Journal on Numerical Analysis. (1989) 26, no. 2, 414–429, https://doi.org/10.1137/0726023, 987398, ZBL0676.65072.
- 3 Sideridis A. B. and Simos T. E., A low-order embedded Runge-Kutta method for periodic initial value problems, Journal of Computational and Applied Mathematics. (1992) 44, no. 2, 235–244, https://doi.org/10.1016/0377-0427(92)90013-N, 1197685, ZBL0773.65052.
- 4 García A., Martín P., and González A. B., New methods for oscillatory problems based on classical codes, Applied Numerical Mathematics. (2002) 42, no. 1–3, 141–157, https://doi.org/10.1016/S0168-9274(01)00147-7, 1921334, ZBL0998.65069.
- 5 Senu N., Suleiman M., and Ismail F., An embedded explicit Runge–Kutta–Nyström method for solving oscillatory problems, Physica Scripta. (2009) 80, no. 1, https://doi.org/10.1088/0031-8949/80/01/015005.
- 6 Van de Vyver H., A symplectic Runge-Kutta-Nyström method with minimal phase-lag, Physics Letters A. (2007) 367, no. 1-2, 16–24, https://doi.org/10.1016/j.physleta.2007.02.066, 2320869, ZBL1209.65075.
- 7 Senu N., Suleiman M., Ismail F., and Othman M., A zero-dissipative Runge-Kutta-Nyström method with minimal phase-lag, Mathematical Problems in Engineering. (2010) 2010, 15, 591341, https://doi.org/10.1155/2010/591341, 2660063, ZBL1192.65105.
- 8 Franco J. M., A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators, Journal of Computational and Applied Mathematics. (2003) 161, no. 2, 283–293, https://doi.org/10.1016/j.cam.2003.03.002, 2017015, ZBL1037.65073.
- 9 Sharp P. W., Fine J. M., and Burrage K., Two-stage and three-stage diagonally implicit Runge-Kutta Nyström methods of orders three and four, IMA Journal of Numerical Analysis. (1990) 10, no. 4, 489–504, https://doi.org/10.1093/imanum/10.4.489, 1078506, ZBL0711.65057.
- 10 Imoni S. O., Otunta F. O., and Ramamohan T. R., Embedded implicit Runge-Kutta Nyström method for solving second-order differential equations, International Journal of Computer Mathematics. (2006) 83, no. 11, 777–784, https://doi.org/10.1080/00207160601084505, 2284139, ZBL1111.65066.
- 11 Al-Khasawneh R. A., Ismail F., and Suleiman M., Embedded diagonally implicit Runge-Kutta-Nystrom 4(3) pair for solving special second-order IVPs, Applied Mathematics and Computation. (2007) 190, no. 2, 1803–1814, https://doi.org/10.1016/j.amc.2007.02.067, 2339773, ZBL1122.65371.
- 12 Anastassi Z. A. and Simos T. E., An optimized Runge-Kutta method for the solution of orbital problems, Journal of Computational and Applied Mathematics. (2005) 175, no. 1, 1–9, https://doi.org/10.1016/j.cam.2004.06.004, 2105665, ZBL1063.65059.
- 13 Simos T. E., Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems, Applied Mathematics Letters. (2009) 22, no. 10, 1616–1621, https://doi.org/10.1016/j.aml.2009.04.008, 2561745, ZBL1171.65449.
- 14 Stavroyiannis S. and Simos T. E., Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs, Applied Numerical Mathematics. (2009) 59, no. 10, 2467–2474, https://doi.org/10.1016/j.apnum.2009.05.004, 2553148.
- 15 Simos T. E., Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation, Acta Applicandae Mathematicae. (2010) 110, no. 3, 1331–1352, https://doi.org/10.1007/s10440-009-9513-6, 2639174, ZBL1192.65111.
- 16
Simos T. E., New stable closed Newton-Cotes trigonometrically fitted formulae for long-time integration, Abstract and Applied Analysis. (2012) 2012, 15, https://doi.org/10.1155/2012/182536, 182536.
10.1155/2012/182536 Google Scholar
- 17
Simos T. E., Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag, Journal of Applied Mathematics. (2012) 2012, 17, https://doi.org/10.1155/2012/420387, 420387.
10.1155/2012/420387 Google Scholar
- 18 Simos T. E., Embedded Runge-Kutta methods for periodic initial value problems, Mathematics and Computers in Simulation. (1993) 35, no. 5, 387–395, https://doi.org/10.1016/0378-4754(93)90040-2, 1252564.
- 19 Avdelas G. and Simos T. E., Block Runge-Kutta methods for periodic initial-value problems, Computers & Mathematics with Applications. (1996) 31, no. 1, 69–83, https://doi.org/10.1016/0898-1221(95)00183-Y, 1362385, ZBL0853.65078.
- 20 Avdelas G. and Simos T. E., Embedded methods for the numerical solution of the Schrödinger equation, Computers & Mathematics with Applications. (1996) 31, no. 2, 85–102, https://doi.org/10.1016/0898-1221(95)00196-4, 1365365, ZBL0863.65042.
- 21 Papadopoulos D. F., Anastassi Z. A., and Simos T. E., A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions, Computer Physics Communications. (2009) 180, no. 10, 1839–1846, https://doi.org/10.1016/j.cpc.2009.05.014, 2678457, ZBL1197.65086.
- 22 Franco J. M. and Palacios M., High-order P-stable multistep methods, Journal of Computational and Applied Mathematics. (1990) 30, no. 1, 1–10, https://doi.org/10.1016/0377-0427(90)90001-G, 1051797, ZBL0726.65091.
- 23 Franco J. M., A class of explicit two-step hybrid methods for second-order IVPs, Journal of Computational and Applied Mathematics. (2006) 187, no. 1, 41–57, https://doi.org/10.1016/j.cam.2005.03.035, 2178096, ZBL1082.65071.
- 24 Dormand J. R., El-Mikkawy M. E. A., and Prince P. J., Families of Runge-Kutta-Nyström formulae, IMA Journal of Numerical Analysis. (1987) 7, no. 2, 235–250, https://doi.org/10.1093/imanum/7.2.235, 968090, ZBL0624.65059.
- 25 Bursa L. and Nigro L., A one-step method for direct integration of structural dynamic equations, International Journal for Numerical Methods in Engineering. (1980) 15, 685–699.
- 26 Gladwell I. and Thomas R. M., Damping and phase analysis for some methods for solving second-order ordinary differential equations, International Journal for Numerical Methods in Engineering. (1983) 19, no. 4, 495–503, https://doi.org/10.1002/nme.1620190404, 702055, ZBL0513.65053.
- 27 Hairer E. and Wanner G., A theory for Nyström methods, Numerische Mathematik. 1975/76, 25, no. 4, 383–400, 0433886, https://doi.org/10.1007/BF01396335.
- 28
Butcher J. C., Numerical Methods for Ordinary Differential Equations, 2008, 2nd edition, John Wiley & Sons, Chichester, UK, https://doi.org/10.1002/9780470753767, 2401398.
10.1002/9780470753767 Google Scholar
- 29 Dormand J. R., Numerical Methods for Differential Equations, 1996, CRC Press, Boca Raton, Fla, USA, 1383317.
- 30 Butcher J. C. and Chen D. J. L., A new type of singly-implicit Runge-Kutta method, Applied Numerical Mathematics. (2000) 34, no. 2-3, 179–188, https://doi.org/10.1016/S0168-9274(99)00126-9, 1770422, ZBL0954.65058.
- 31 Allen,R. C.Jr. and Wing G. M., An invariant imbedding algorithm for the solution of inhomogeneous linear two-point boundary value problems, Journal of Computational Physics. (1974) 14, 40–58, 0381323, https://doi.org/10.1016/0021-9991(74)90004-7, ZBL0273.65065.
- 32 Van de Vyver H., A Runge-Kutta-Nyström pair for the numerical integration of perturbed oscillators, Computer Physics Communications. (2005) 167, no. 2, 129–142.
- 33 Lambert J. D. and Watson I. A., Symmetric multistep methods for periodic initial value problems, Journal of the Institute of Mathematics and its Applications. (1976) 18, no. 2, 189–202, 0431691, https://doi.org/10.1093/imamat/18.2.189, ZBL0359.65060.
- 34 Stiefel E. and Bettis D. G., Stabilization of Cowell′s method, Numerische Mathematik. (1969) 13, no. 2, 154–175, 0263250, https://doi.org/10.1007/BF02163234, ZBL0219.65062.
- 35
Cong N. H., A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers, Numerical Algorithms. (1993) 4, no. 3, 263–281, https://doi.org/10.1007/BF02144107, 1213191, ZBL0768.65041.
10.1007/BF02144107 Google Scholar