Electronic and Spatial Structures of Water-Soluble Dinitrosyl Iron Complexes with Thiol-Containing Ligands Underlying Their Ability to Act as Nitric Oxide and Nitrosonium Ion Donors
Corresponding Author
Anatoly F. Vanin
N. N. Semyonov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia ras.ru
Search for more papers by this authorDosymzhan Sh. Burbaev
N. N. Semyonov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia ras.ru
Search for more papers by this authorCorresponding Author
Anatoly F. Vanin
N. N. Semyonov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia ras.ru
Search for more papers by this authorDosymzhan Sh. Burbaev
N. N. Semyonov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia ras.ru
Search for more papers by this authorAbstract
The ability of mononuclear dinitrosyl iron commplexes (M-DNICs) with thiolate ligands to act as NO donors and to trigger S-nitrosation of thiols can be explain only in the paradigm of the model of the [Fe+(NO+)2] core ({Fe(NO)2}7 according to the Enemark-Feltham classification). Similarly, the {(RS−)2Fe+(NO+)2}+ structure describing the distribution of unpaired electron density in M-DNIC corresponds to the low-spin (S = 1/2) state with a d7 electron configuration of the iron atom and predominant localization of the unpaired electron on MO(dz2) and the square planar structure of M-DNIC. On the other side, the formation of molecular orbitals of M-DNIC including orbitals of the iron atom, thiolate and nitrosyl ligands results in a transfer of electron density from sulfur atoms to the iron atom and nitrosyl ligands. Under these conditions, the positive charge on the nitrosyl ligands diminishes appreciably, the interaction of the ligands with hydroxyl ions or with thiols slows down and the hydrolysis of nitrosyl ligands and the S-nitrosating effect of the latter are not manifested. Most probably, the S-nitrosating effect of nitrosyl ligands is a result of weak binding of thiolate ligands to the iron atom under conditions favoring destabilization of M-DNIC.
References
- 1 Vanin A. F. and Burbaev D. Sh., Proteins, containing iron-sulfur centers, Zhurnal Mendeleevskogo Khimicheskogo Obshestva SSSR. (1976) 21, 672–676.
- 2 Vanin A. F., Nitrosyl non-heme iron complexes in animal tissues and microorganisms, Doctoral thesis, 1980, Institute of Chemical Physics, Moscow, Russia.
- 3 Henry Y., Ducrocq C., Drapier J. C., Servent D., Pellat C., and Guissani A., Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells, European Biophysics Journal. (1991) 20, no. 1, 1–15, 2-s2.0-0025830402.
- 4 Vanin A. F. and Kleschyov A. L., S. Lukiewicz and J. L. Zweier, EPR studies and biological implications of nitrosyl non-heme iron complexes, Nitric Oxide in Transplant Rejection and Anti-Tumor Defense, 1998, Kluwer Academic Publishers, 49–82.
- 5 Butler A. R. and Megson I. L., Non-heme iron nitrosyls in biology, Chemical Reviews. (2002) 102, no. 4, 1155–1165, 2-s2.0-0036525945, https://doi.org/10.1021/cr000076d.
- 6 Vanin A. F., van Faassen E. et al., E. van Faassen, A. F. Vanin et al., DNIC: physico-chemical properties and biological activity, Radicals for Live: The Various Forms of Nitric Oxide, 2007, Elsevier, 19–74.
- 7 Richardson D. R. and Lok H. C., The nitric oxide-iron interplay in mammalian cells: transport and storage of dinitrosyl iron complexes, Biochimica et Biophysica Acta. (2008) 1780, no. 4, 638–651, 2-s2.0-40949165720, https://doi.org/10.1016/j.bbagen.2007.12.009.
- 8 Vanin A. F., Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology, Nitric Oxide: Biology and Chemistry. (2009) 21, no. 1, 1–13, 2-s2.0-67649781729, https://doi.org/10.1016/j.niox.2009.03.005.
- 9 Vanin A. F., Serezhenkov V. A., Mikoyan V. D., and Genkin M. V., The 2.03 signal as an indicator of dinitrosyl-iron complexes with thiol-containing ligands, Nitric Oxide: Biology and Chemistry. (1998) 2, no. 4, 224–234, 2-s2.0-0032427989, https://doi.org/10.1006/niox.1998.0180.
- 10 Nalbandyan R. M., Vanin A. F., and Blumenfeld L. A., EPR signals of a new type in yeast cells, Proceedings of the Free Radicals Processes in Biological Systems, 1964, Moscow, Russia.
- 11 Mallard J. R. and Kent M., Differences observed between electron spin resonance signals from surviving tumour tissues and from their corresponding normal tissues, Nature. (1964) 204, no. 4964, 1192–1964, 2-s2.0-0041871236, https://doi.org/10.1038/2041192a0.
- 12 Vanin A. F. and Nalbandyan R. M., Free radicals of a new type in yeast cells, Biophysics (Rus). (1965) 10, 167–168, 2-s2.0-0013682077.
- 13 Vithayathil A. J., Ternberg J. L., and Commoner B., Changes in electron spin resonance signals of rat liver during chemical carcinogenesis, Nature. (1965) 207, no. 5003, 1246–1249, 2-s2.0-0013850651, https://doi.org/10.1038/2071246a0.
- 14 Vanin A. F., Chetverikov A. G., and Blumenfel′d L. A., Investigation of non-heme iron complexes in cells and tissues by the EPR method, Biophysics (Rus). (1967) 12, no. 5, 953–964, 2-s2.0-49949143564.
- 15 Vanin A. F., Poltorakov A. P., Mikoyan V. D., Kubrina L. N., and Burbaev D. S., Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: electron paramagnetic resonance and optical studies, Nitric Oxide: Biology and Chemistry. (2010) 23, no. 2, 136–149, 2-s2.0-77954689327, https://doi.org/10.1016/j.niox.2010.05.285.
- 16 McDonald C. C., Phillips W. D., and Mower H. F., An electron spin resonance study of some complexes of iron, nitric oxide, and anionic ligands, Journal of the American Chemical Society. (1965) 87, no. 15, 3319–3326, 2-s2.0-0008605922.
- 17 Vanin A. F., Identification of divalent iron complexes with cysteine in biological systems EPR method, Biochemistry (Moscow). (1967) 32, 228–232, 2-s2.0-0014065407.
- 18 Vanin A. F., Mokh V. P., Serezhenkov V. A., and Chazov E. I., Vasorelaxing activity of stable powder preparations of dinitrosyl iron complexes with cysteine or glutathione ligands, Nitric Oxide: Biology and Chemistry. (2007) 16, no. 3, 322–330, 2-s2.0-34047163022, https://doi.org/10.1016/j.niox.2006.12.003.
- 19 Lakomkin V. L., Vanin A. F., Timoshin A. A., Kapelko V. I., and Chazov E. I., Long-lasting hypotensive action of stable preparations of dinitrosyl-iron complexes with thiol-containing ligands in conscious normotensive and hypertensive rats, Nitric Oxide: Biology and Chemistry. (2007) 16, no. 4, 413–418, 2-s2.0-34249698191, https://doi.org/10.1016/j.niox.2007.03.002.
- 20 Mordvintcev P. I., Rudneva V. G., Vanin A. F., Shimkevich L. L., and Khodorov B. I., The inhibitory effect of low-molecular dinitrosyl iron complexes on platelet aggregation, Biochemistry (Moscow). (1986) 51, 1851–1857.
- 21 Shamova E. V., Bichan O. D., Drozd E. S. et al., Regulation of the functional and mechanical properties of platelet and red blood cells by nitric oxide donors, Biophysics (Rus). (2011) 56, 265–271.
- 22 Pisarenko O. I., Shul′zhenko V. S., Studneva I. M., Pelogeikina Yu. A., Timoshin A. A., and Vanin A. F., Effects of dinitrosyl iron complex with glutathione and its components on ischemic rat heart during reperfusion, Biophysics (Rus). (2009) 54, no. 6, 709–713, 2-s2.0-77952079422, https://doi.org/10.1134/S0006350909060104.
- 23 Remizova M. I., Kochetygov N. I., Gerbout K. A. et al., Effect of dinitrosyl iron complexes with glutathione on hemorrhagic shock followed by saline treatment, European Journal of Pharmacology. (2011) 662, no. 1–3, 40–46, https://doi.org/10.1016/j.ejphar.2011.04.046.
- 24 Shekhter A. B., Rudenko T. G., Serezhenkov V. A., and Vanin A. F., Dinitrosyl-iron complexes with cysteine or glutathione accelerate skin wound healing in animals, Biophysics (Rus). (2007) 52, no. 3, 539–547, 2-s2.0-34548030446.
- 25 Veliev E. I., Kotov S. V., Shishlo V. K., Serezhenkov V. A., Lozinsky V. I., and Vanin A. F., Beneficial effect of dinitrosyl iron complexes with thiol ligands on the rat penile cavernous bodies, Biophysics (Rus). (2008) 53, no. 2, 153–157, 2-s2.0-50249178678, https://doi.org/10.1134/S0006350908020061.
- 26 Andreyev-Andriyevsky A. A., Mikoyan V. D., Serezhenkov V. A., and Vanin A. F., Penile erectile activity of dinitrosyl iron complexes with thiol-containing ligands, Nitric Oxide: Biology and Chemistry. (2011) 24, 217–223.
- 27 Vanin A. F. and Chazov E. I., Prospects of designing the medicines with diverse therapeutic activity on the dasis of dinitrosyl iron complexes with thiol-containing ligands, Biophysics (Rus). (2011) 56, no. 2, 304–315.
- 28 Mülsch A., Mordvintcev P., Vanin A. F., and Busse R., The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron(II) complex is stored in a protein-bound form in vascular tissue and is released by thiols, FEBS Letters. (1991) 294, no. 3, 252–256, 2-s2.0-0026086382, https://doi.org/10.1016/0014-5793(91)81441-A.
- 29 Vedernikov Y. P., Mordvintcev P. I., Malenkova I. V., and Vanin A. F., Similarity between the vasorelaxing activity of dinitrosyl iron cysteine complexes and endothelium-derived relaxing factor, European Journal of Pharmacology. (1992) 211, no. 3, 313–317, 2-s2.0-0026528974, https://doi.org/10.1016/0014-2999(92)90386-I.
- 30 Flitney F. W., Megson I. L., Flitney D. E., and Butler A. R., Iron-sulphur cluster nitrosyls, a novel class of nitric oxide generator: mechanism of vasodilator action on rat isolated tail artery, British Journal of Pharmacology. (1992) 107, no. 3, 842–848, 2-s2.0-0026792963.
- 31 Flitney F. W., Megson I. L., Thomson J. L. M., Kennovin G. D., and Butler A. R., Vasodilator responses of rat isolated tail artery enhanced by oxygen-dependent, photochemical release of nitric oxide from iron-sulphur-nitrosyls, British Journal of Pharmacology. (1996) 117, no. 7, 1549–1557, 2-s2.0-0029986410.
- 32 Sanina N. A., Syrtsova L. A., Shkondina N. I., Rudneva T. N., Malkova E. S., Bazanov T. A., Kotel′nikov A. I., and Aldoshin S. M., Reactions of sulfur-nitrosyl iron complexes of “g = 2.03” family with hemoglobin (Hb): kinetics of Hb-NO formation in aqueous solutions, Nitric Oxide: Biology and Chemistry. (2007) 16, no. 2, 181–188, 2-s2.0-33846444018, https://doi.org/10.1016/j.niox.2006.10.005.
- 33 Vanin A. F., Iron diethyldithiocarbamate as spin trap for nitric oxide detection, Methods in Enzymology. (1998) 301, 269–279, 2-s2.0-0031740460, https://doi.org/10.1016/S0076-6879(99)01091-5.
- 34 Timoshin A. A., Gubkina S. A., Orlova T. R., Ruuge E. K., Vanin A. F., and Chazov E. I., Study of the nitric oxide level in the tissues of rat organs and its changes after a long-term inhalation of the air with increased no content, Doklady Biochemistry and Biophysics. (2009) 425, no. 1, 110–113, 2-s2.0-65449128809, https://doi.org/10.1134/S1607672909020148.
- 35 Timoshin A. A., Vanin A. F., Orlova T. R., Sanina N. A., Ruuge E. K., Aldoshin S. M., and Chazov E. I., Protein-bound dinitrosyl-iron complexes appearing in blood of rabbit added with a low-molecular dinitrosyl-iron complex: EPR studies, Nitric Oxide: Biology and Chemistry. (2007) 16, no. 2, 286–293, 2-s2.0-33846458307, https://doi.org/10.1016/j.niox.2006.09.005.
- 36 Vanin A. F., Malenkova I. V., Mordvintsev O. I., and Mülsch A., Dinitrosyl iron complexes with thiol-containing ligands and their reversible conversion into nitrosothiols, Biochemistry (Moscow). (1993) 58, no. 7, 1094–1103, 2-s2.0-0027637998.
- 37 Boese M., Mordvintcev P. I., Vanin A. F., Busse R., and Mülsch A., S-nitrosation of serum albumin by dinitrosyl-iron complex, Journal of Biological Chemistry. (1995) 270, no. 49, 29244–29249, 2-s2.0-0028849999, https://doi.org/10.1074/jbc.270.49.29244.
- 38 Mayer B., Kleschyov A. L., Stessel H., Russwurm M., Münzel T., Koesling D., and Schmidt K., Inactivation of soluble guanylate cyclase by stoichiometric S-nitrosation, Molecular Pharmacology. (2009) 75, no. 4, 886–891, 2-s2.0-63849335621, https://doi.org/10.1124/mol.108.052142.
- 39 Vanin A. F., Malenkova I. V., and Serezhenkov V. A., Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies, Nitric Oxide: Biology and Chemistry. (1997) 1, no. 3, 191–203, 2-s2.0-0031417313, https://doi.org/10.1006/niox.1997.0122.
- 40 Bosworth C. A., Toledo J. C., Zmijewski J. W., Li Q., and Lancaster J. R., Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide, Proceedings of the National Academy of Sciences of the United States of America. (2009) 106, no. 12, 4671–4676, 2-s2.0-63849086054, https://doi.org/10.1073/pnas.0710416106.
- 41 Foster M. W., Liu L., Zeng M., Hess D. T., and Stamler J. S., A genetic analysis of nitrosative stress, Biochemistry. (2009) 48, no. 4, 792–799, 2-s2.0-60749128326, https://doi.org/10.1021/bi801813n.
- 42 Pearsall K. A. and Bonner B. T., Aqueous nitrosyl iron(II) chemistry. 2. Kinetics and mechanism of nitric oxide reduction. The dinitrodsyl complex, Inorganic Chemistry. (1982) 21, 1978–1985.
- 43 Vanin A. F. and Malenkova I. V., Iron is a catalyst of cysteine and glutathione S-nitrosation on contact with nitric oxide in aqueous solutions at neutral pH, Biochemistry (Moscow). (1996) 61, no. 3, 505–513, 2-s2.0-0039229004.
- 44 Enemark J. H. and Feltham R. D., Principles of structure, bonding, and reactivity for metal nitrosyl complexes, Coordination Chemistry Reviews. (1974) 13, no. 4, 339–406, 2-s2.0-4243616042.
- 45 D′Autréaux B., Horner O., Oddou J. L., Jeandey C., Gambarelli S., Berthomieu C., Latour J. M., and Michaud-Soret I., Spectroscopic description of the two nitrosyl-iron complexes responsible for fur inhibition by nitric oxide, Journal of the American Chemical Society. (2004) 126, no. 19, 6005–6016, 2-s2.0-2442431645, https://doi.org/10.1021/ja031671a.
- 46 Stojanovic S., Stanic D., Nicolic M., Spasic M., and Niketic V., Iron catalyzed conversion of NO into nitrosonim (NO+) and nitroxyl (NO-) species, Nitric Oxide: Biology and Chemistry. (2004) 11, no. 3, 256–262, https://doi.org/10.1016/j.niox.2004.09.007.
- 47 Bonner M. T. and Stedman G., M. Feelisch and J. S. Stamler, The chemistry of nitric oxide and redox-related species, Methods of Nitric Oxide Research, 1996, John Wiley & Sons, New York, NY, USA, 3–18.
- 48 Vanin A. F., On the stability of the dinitrosyl-iron comlex, a candidate for the endothelium-derived relaxing factor, Biochemistry (Moscow). (1995) 60, 225–230.
- 49 Vanin A. F., Papina A. A., Serezhenkov V. A., and Koppenol W. H., The mechanisms of S-nitrosothiol decomposition catalyzed by iron, Nitric Oxide: Biology and Chemistry. (2004) 10, no. 2, 60–73, 2-s2.0-2342479749, https://doi.org/10.1016/j.niox.2004.02.005.
- 50 Burbaev D. Sh., Vanin D. Sh., and Blumenfeld L. A., Electronic and spatial structures of paramagnetic dinitrosyl complexes with bivalent iron, Zhurnal Strukturnoi Khimii. (1971) 12, 252–256.
- 51 Burbaev D. Sh., Study by EPR method of compounds modeling non-heme iron complexes of biological systems, Ph.D. thesis, 1971, Moscow State University, Moscow, Russia.
- 52 Garifianov N. S. and Luchkina S. A., EPR of some nitrosyl compounds of iron, Doklady Akademii Nauk SSSR. (1969) 189, 779–782.
- 53 McGarvey B. R., Theory of the spin hamiltonian parameters for low spin cobalt (II) complexes, Canadian Journal of Chemistry. (1975) 53, no. 16, 2498–2511, https://doi.org/10.1139/v75-355.
- 54 Vanin A. F., Sanina N. A., Serezhenkov V. A., Burbaev D. Sh., Lozinsky V. I., and Aldoshin S. M., Dinitrosyl-iron complexes with thiol-containing ligands: spatial and electronic structures, Nitric Oxide: Biology and Chemistry. (2007) 16, no. 1, 82–93, 2-s2.0-33751411410, https://doi.org/10.1016/j.niox.2006.07.005.
- 55 Vanin A. F., Burbaev D. Sh., Mardanyan S. S., Nalbandyan R. M., Mutuskin A. A., and Pshonova K. V., On the coordination of iron in iron-sulfur proteins with thiol groups, Proceedings of the IY International Biophysics Congress Part 2, 1973, Moscow, Russia, 678–683.
- 56 Jain S. C., Reddy K. V., and Reddy T. R., EPR of low spin d7 Fe+, Co2+, and Ni3+ cyanide complexes in NacL and KCl, Journal of Chemical Physics. (1975) 62, no. 11, 4366–4372, https://doi.org/10.1063/1.430336.
- 57 Drago R. S., Physical Methods in Chemistry, 1977, WB Saunders, Philadelphia, Pa, USA.
- 58 Radón M., Broclawik E., and Pierloot K., Electronic structure of selected {Fe(NO)}7 complexes in heme and non-heme architectures: a density functional and multireference ab initio study, Journal of Physical Chemistry B. (2010) 114, no. 3, 1518–1528, 2-s2.0-76249097183, https://doi.org/10.1021/jp910220r.
- 59 Serres R. G., Grapperhaus C. A., Bothe E., Bill E., Weyhermüller T., Neese F., and Wieghardt K., Structural, spectroscopic, and computational study of an octahedral, non-heme {Fe–NO}6−8 series: [Fe(NO)(cyclam-ac)]2+1+10, Journal of the American Chemical Society. (2004) 126, no. 16, 5138–5153, 2-s2.0-1942456778, https://doi.org/10.1021/ja030645+.
- 60 Chiang C. Y., Miller M. L., Reibenspies J. H., and Darensbourg M. Y., Bismercaptoethanediazacyclooctane as a N2S2 chelating agent and Cys-X-Cys mimic for Fe(NO) and Fe(NO)2, Journal of the American Chemical Society. (2004) 126, no. 35, 10867–10874, 2-s2.0-4444344390, https://doi.org/10.1021/ja049627y.
- 61 Manoharan P. T. and Gray H. B., Electronic structure of nitroprusside ion, Journal of the American Chemical Society. (1965) 87, no. 15, 3340–3348, https://doi.org/10.1021/ja01093a011, 2-s2.0-0000070314.
- 62 van Voorst J. D. W. and Hemmerich P., Electron spin resonance of [Fe(CN)5NO]3- and [Fe(CN)5NOH]2-, The Journal of Chemical Physics. (1966) 45, no. 11, 3914–3918, 2-s2.0-0012010552.
- 63 Schmidt J., Kühr H., Dorn W. L., and Kopf J., Nitrosyl-tetracyano-ferrat(II), Inorganic and Nuclear Chemistry Letters. (1974) 10, no. 1, 55–61, 2-s2.0-49549158686.
- 64 McNeil D. A. C., Raynor J. B., and Symons M. C. R., Structure and reactivity of transition-metal complexes with polyatomic ligands. Part I. Electron spin resonance spectra of [Mn(CN)5NO]2- and [Fe(CN)5NO]3-, Journal of the Chemical Society A. (1965) 410–415, 2-s2.0-37049048032, https://doi.org/10.1039/JR9650000410.
- 65 Goodman B., Raynor J., and Simons M., Electron spin resonance of Bis(N,N-direthyldithiocarbamato) nitrosyl iron, Journal of the Chemical Society A. (1969) 2572–2575.
- 66 Lu T. T., Lai S. Z., Li Y. W. et al., Discrimination of mononuclear and dinuclear dinitrosyl iron complexes (DNICs) by SK-edge X-ray absorption spectroscopy: insight into the electronic structure and reactivity of DNICs, Inorganic Chemistry. (2011) 50, no. 12, 5396–5406, https://doi.org/10.1021/ic102108b.
- 67 Shestakov A. F., Shul′ga Yu. M., Emel′yanova N. S., Sanina N. A., and Aldoshin S. M., Molecular and electronic structure and IR spectra of mononuclear dinitrosyl iron complex [Fe(SC2H3N3) (SC2H2N3)(NO)2]: a theoretical study, Russian Chemical Bulletin. (2007) 56, no. 7, 1289–1297, 2-s2.0-37649000221, https://doi.org/10.1007/s11172-007-0197-7.
- 68 Tsai M. C., Tsai F. T., Lu T. T., Tsai M. L., Wei Y. C., Hsu I. J., Lee J. F., and Liaw W. F., Relative binding affinity of thiolate, imidazolate, phenoxide, and nitrite toward the {Fe(NO)2} motif of dinitrosyl iron complexes (DNICS): the characteristic pre-edge energy of {Fe(NO)2}9 DNICS, Inorganic Chemistry. (2009) 48, no. 19, 9579–9591, 2-s2.0-70349774479, https://doi.org/10.1021/ic901675p.
- 69 Ye S. and Neese F., The unusual electronic structure of dinitrosyl iron complexes, Journal of the American Chemical Society. (2010) 132, no. 11, 3646–3647, 2-s2.0-77949871593, https://doi.org/10.1021/ja9091616.
- 70 Williams D. L. H., Nitrosation Reactions and the Chemistry of Nitric Oxide, 2004, Elsevier.
- 71 Chen Y. I., Ku W. C., Feng L. T., Tsai M. L., Hsieh C. H., Hsu W. H., Liaw W. F., Hung C. H., and Chen Y. J., Nitric oxide physiological responses and delivery mechanisms probed by water-soluble Roussin′s red ester and {Fe(NO)2}10 DNIC, Journal of the American Chemical Society. (2008) 130, no. 33, 10929–10938, 2-s2.0-50249129238, https://doi.org/10.1021/ja711494m.
- 72 Vanin A. F. and Aliev D. I., High spin nitrosyl non-heme iron complexes in animal tissues, Studia Biofizika. (1983) 93, 63–68.
- 73 Yablokov Yu. V., Voronkova V. K., and Mossina V. P., Paramagnetic Resonance Exchange Clusters (Rus), 1988, Nauka, Moscow, Russia.
- 74 Hagen W. R., EPR spectroscopy of iron-sulfur proteins, Advances in Inorganic Chemistry. (1992) 38, 165–222, 2-s2.0-77956777769, https://doi.org/10.1016/S0898-8838(08)60064-1.
- 75 Hsu I. J., Hsieh C. H., Ke S. C., Chiang K. A., Lee J. M., Chen J. M., Jang L. Y., Lee G. H., Wang Y., and Liaw W. F., New members of a class of iron-thiolate-nitrosyl compounds: trinuclear iron-thiolate-nitrosyl complexes containing Fe3S6 core, Journal of the American Chemical Society. (2007) 129, no. 5, 1151–1159, 2-s2.0-33846827088, https://doi.org/10.1021/ja065401e.
- 76 Finn C. B. P., Orbach R., and Wolf W. P., Spin-lattice relaxation in cerium magnesium nitrate at liquid helium temperature: a new process, Proceedings of the Physical Society A. (1961) 77, no. 494, 261–268, 2-s2.0-0005381022, https://doi.org/10.1088/0370-1328/77/2/305.
- 77 Orbach R., Spin-lattice relaxation in rare-earth salts, Proceedings of the Royal Society A. (1961) 264, no. 1319, 458–484.
- 78 Abragam A. and Bleaney B., Electron Paramagnetic Resonance of Transition Ions, 1970, Clarendon Press, Oxford, UK.
- 79 Gayda J. P., Gibson J. F., Cammack R., Hall D. O., and Mullinger R., Spin lattice relaxation and exchange interaction in a 2 iron, 2 sulphur protein, Biochimica et Biophysica Acta. (1976) 434, no. 1, 154–163, 2-s2.0-0017157079.
- 80 Chen T. N., Lo F. C., Tsai M. L., Shih K. N., Chiang M. H., Lee G. H., and Liaw W. F., Dinitrosyl iron complexes [E5Fe(NO)2]- (E = S,Se): a precursor of Roussin′s black salt [Fe4E3(NO)7]-, Inorganica Chimica Acta. (2006) 359, no. 8, 2525–2533, 2-s2.0-33746863434, https://doi.org/10.1016/j.ica.2006.02.035.
- 81 Giliano N. Ya., Konevega L. V., Noskin L. A., Serezhenkov V. A., Poltorakov A. P., and Vanin A. F., Dinitrosyl iron complexes with thiol-containing ligands and apoptosis: studies with HeLa cell cultures, Nitric Oxide: Biology and Chemistry. (2011) 24, no. 3, 151–159, https://doi.org/10.1016/j.niox.2011.02.005.
- 82 Yalowich J. C., Gorbunov N. V., Kozlov A. V., Allan W., and Kagan V., Mechanisms of nitric oxide protection against tert-butyl hydroperoxide-induced cytotoxicity in iNOS-transduced human erythroleucemia cells, Biochemistry. (1999) 38, 10691–10698.
- 83 Kim Y. M., Chung H. T., Simmons R. L., and Billiar T. R., Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition, Journal of Biological Chemistry. (2000) 275, no. 15, 10954–10961, 2-s2.0-0034646693, https://doi.org/10.1074/jbc.275.15.10954.
- 84 Zhuang S. and Simon G., Peroxynitrite-induced apoptosis involves activation of multiple caspases in HL-60 cells, American Journal of Physiology. (2000) 279, no. 2, C341–C351, 2-s2.0-0033852205.
- 85 Kleschyov A. L., Strand S., Schmitt S., Gottfried D., Skatchkov M. V., Sjakste N., Daiber A., Umansky V., and Munzel T., Dinitrosyl-iron triggers apoptosis in Jurkat cells despite overexpression of Bcl-2, Free Radical Biology and Medicine. (2006) 40, no. 8, 1340–1348, 2-s2.0-33646027331, https://doi.org/10.1016/j.freeradbiomed.2005.12.001.
- 86 de Luca A., Moroni N., Serafino A. et al., Treatment of doxorubicin resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reverseal of drug resistance, Biochemical Journal. (2011) 440, 175–183, https://doi.org/10.1042/BJ20111333.
- 87 Ji Y., Akerboom T. P. M., Sies H., and Thomas J. A., S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione, Archives of Biochemistry and Biophysics. (1999) 362, no. 1, 67–78, 2-s2.0-0033080394, https://doi.org/10.1006/abbi.1998.1013.
- 88 Hogg N., Biological chemistry and clinical potential of S-nitrosothiols, Free Radical Biology and Medicine. (2000) 28, no. 10, 1478–1486, 2-s2.0-0034656848, https://doi.org/10.1016/S0891-5849(00)00248-3.
- 89 Coles S. J., Easton P., Sharrod H., Hutson S. M., Hancock J., Patel V. B., and Conway M. E., S-nitrosoglutathione inactivation of the mitochondrial and cytosolic BCAT proteins: S-nitrosation and s-thiolation, Biochemistry. (2009) 48, no. 3, 645–656, 2-s2.0-59249105149, https://doi.org/10.1021/bi801805h.
- 90 Tao L. and English A. M., Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione, Biochemistry. (2004) 43, no. 13, 4028–4038, 2-s2.0-1842486832, https://doi.org/10.1021/bi035924o.