Human Plasma Very Low-Density Lipoproteins Are Stabilized by Electrostatic Interactions and Destabilized by Acidic pH
Madhumita Guha
Department of Physiology and Biophysics, School of Medicine, Boston University, Boston, MA 02118, USA bu.edu
Search for more papers by this authorCorresponding Author
Olga Gursky
Department of Physiology and Biophysics, School of Medicine, Boston University, Boston, MA 02118, USA bu.edu
Search for more papers by this authorMadhumita Guha
Department of Physiology and Biophysics, School of Medicine, Boston University, Boston, MA 02118, USA bu.edu
Search for more papers by this authorCorresponding Author
Olga Gursky
Department of Physiology and Biophysics, School of Medicine, Boston University, Boston, MA 02118, USA bu.edu
Search for more papers by this authorAbstract
Very low-density lipoproteins (VLDL) are precursors of low-density lipoproteins (LDL, or “bad cholesterol”). Factors affecting structural integrity of VLDL are important for their metabolism. To assess the role of electrostatic interactions in VLDL stability, we determined how solvent ionic conditions affect the heat-induced VLDL remodeling. This remodeling involves VLDL fusion, rupture, and fission of apolipoprotein E-containing high-density lipoprotein-(HDL-) like particles similar to those formed during VLDL-to-LDL maturation. Circular dichroism and turbidity show that increasing sodium salt concentration in millimolar range reduces VLDL stability and its enthalpic component. Consequently, favorable electrostatic interactions stabilize VLDL. Reduction in pH from 7.4 to 6.0 reduces VLDL stability, with further destabilization detected at pH < 6, which probably results from titration of the N-terminal α-amino groups and free fatty acids. This destabilization is expected to facilitate endosomal degradation of VLDL, promote their coalescence into lipid droplets in atherosclerotic plaques, and affect their potential use as drug carriers.
Supporting Information
The supplementary material includes the melting data illustrating the destabilizing effects of TRIS on VLDL assembly and the effect of salt on LDL stability.
Filename | Description |
---|---|
jl493720-sup-0001-f1.pdfPDF document, 18.6 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Krauss R. M., Atherogenicity of triglyceride-rich lipoproteins, American Journal of Cardiology. (1998) 81, no. 4 A, 13B–17B, 2-s2.0-0032567917, https://doi.org/10.1016/S0002-9149(98)00032-0.
- 2 Adiels M., Olofsson S. O., Taskinen M. R., and Borén J., Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome, Arteriosclerosis, Thrombosis, and Vascular Biology. (2008) 28, no. 7, 1225–1236, 2-s2.0-46249093117, https://doi.org/10.1161/ATVBAHA.107.160192.
- 3 Therond P., Catabolism of lipoproteins and metabolic syndrome, Current Opinion in Clinical Nutrition and Metabolic Care. (2009) 12, no. 4, 366–371, 2-s2.0-68049109461, https://doi.org/10.1097/MCO.0b013e32832c5a12.
- 4 Havel R. J., Triglyceride-rich lipoproteins and plasma lipid transport, Arteriosclerosis, Thrombosis, and Vascular Biology. (2010) 30, no. 1, 9–19, 2-s2.0-73849123494, https://doi.org/10.1161/ATVBAHA.108.178756.
- 5 Kannel W. B. and Vasan R. S., Triglycerides as vascular risk factors: new epidemiologic insights, Current Opinion in Cardiology. (2009) 24, no. 4, 345–350, 2-s2.0-67651160487, https://doi.org/10.1097/HCO.0b013e32832c1284.
- 6 Dallinga-Thie G. M., Franssen R., Mooij H. L., Visser M. E., Hassing H. C., Peelman F., Kastelein J. J. P., Péterfy M., and Nieuwdorp M., The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight, Atherosclerosis. (2010) 211, no. 1, 1–8, 2-s2.0-77954313348, https://doi.org/10.1016/j.atherosclerosis.2009.12.027.
- 7 Breckenridge W. C., The catabolism of very low density lipoproteins, Canadian Journal of Biochemistry and Cell Biology. (1985) 63, no. 8, 890–897, 2-s2.0-0022388028.
- 8 Musliner T. A., Long M. D., Forte T. M., Nichols A. V., Gong E. L., Blanche P. J., and Krauss R. M., Dissociation of high density lipoprotein precursors from apolipoprotein B-containing lipoproteins in the presence of unesterified fatty acids and a source of apolipoprotein A-I, Journal of Lipid Research. (1991) 32, no. 6, 917–933, 2-s2.0-0025881904.
- 9 Krimbou L., Marcil M., Chiba H., and Genes J., Structural and functional properties of human plasma high density-sized lipoprotein containing only apoE particles, Journal of Lipid Research. (2003) 44, no. 5, 884–892, 2-s2.0-0142042353, https://doi.org/10.1194/jlr.M200273-JLR200.
- 10 Rensen P. C. N., Jong M. C., Van Vark L. C., Van Der Boom H., Hendriks W. L., Van Berkel T. J. C., Biessen E. A. L., and Havekes L. M., Apolipoprotein E is resistant to intracellular degradation in vitro and in vivo. Evidence for retroendocytosis, Journal of Biological Chemistry. (2000) 275, no. 12, 8564–8571, 2-s2.0-0034708664, https://doi.org/10.1074/jbc.275.12.8564.
- 11 Heeren J. and Beisiegel U., Intracellular metabolism of triglyceride-rich lipoproteins, Current Opinion in Lipidology. (2001) 12, no. 3, 255–260, 2-s2.0-0034983588, https://doi.org/10.1097/00041433-200106000-00003.
- 12 Heeren J., Beisiegel U., and Grewal T., Apolipoprotein E recycling: implications for dyslipidemia and atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology. (2006) 26, no. 3, 442–448, 2-s2.0-33646544088, https://doi.org/10.1161/01.ATV.0000201282.64751.47.
- 13 Anber V., Millar J. S., McConnell M., Shepherd J., and Packard C. J., Interaction of very-low-density, intermediate-density, and low-density lipoproteins with human arterial wall proteoglycans, Arteriosclerosis, Thrombosis, and Vascular Biology. (1997) 17, no. 11, 2507–2514, 2-s2.0-0031472257.
- 14 Camejo G., Hurt-Camejo E., Wiklund O., and Bondjers G., Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis, Atherosclerosis. (1998) 139, no. 2, 205–222, 2-s2.0-0031877416, https://doi.org/10.1016/S0021-9150(98)00107-5.
- 15 Skålén K., Gustafsson M., Knutsen Rydberg E., Hultén L. M., Wiklund O., Innerarity T. L., and Boren J., Subendothelial retention of atherogenic lipoproteins in early atherosclerosis, Nature. (2002) 417, no. 6890, 750–754, 2-s2.0-0037071843, https://doi.org/10.1038/nature00804.
- 16 Tabas I., Williams K. J., and Borén J., Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications, Circulation. (2007) 116, no. 16, 1832–1844, 2-s2.0-37349021003, https://doi.org/10.1161/CIRCULATIONAHA.106.676890.
- 17 Guyton J. R. and Klemp K. F., Development of the atherosclerotic core region: chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta, Arteriosclerosis and Thrombosis. (1994) 14, no. 8, 1305–1314, 2-s2.0-0027978521.
- 18 Hong Chung Byung, Tallis G., Yalamoori V., Anantharamaiah G. M., and Segrest J. P., Liposome-like particles isolated from human atherosclerotic plaques are structurally and compositionally similar to surface remnants of triglyceride- rich lipoproteins, Arteriosclerosis and Thrombosis. (1994) 14, no. 4, 622–635, 2-s2.0-0028230229.
- 19 Oorni K., Pentikainen M. O., Ala-Korpela M., and Kovanen P. T., Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions, Journal of Lipid Research. (2000) 41, no. 11, 1703–1714, 2-s2.0-0033729477.
- 20 Guha M., England C., Herscovitz H., and Gursky O., Thermal transitions in human very-low-density lipoprotein: fusion, rupture, and dissociation of HDL-like particles, Biochemistry. (2007) 46, no. 20, 6043–6049, 2-s2.0-34249092307, https://doi.org/10.1021/bi7001532.
- 21 Segrest J. P., Jones M. K., De Loof H., Brouillette C. G., Venkatachalapathi Y. V., and Anantharamaiah G. M., The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function, Journal of Lipid Research. (1992) 33, no. 2, 141–166, 2-s2.0-0026523122.
- 22 Segrest J. P., Jones M. K., Klon A. E., Sheldahl C. J., Hellinger M., De Loof H., and Harvey S. C., A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein, Journal of Biological Chemistry. (1999) 274, no. 45, 31755–31758, 2-s2.0-0033527736, https://doi.org/10.1074/jbc.274.45.31755.
- 23 Benjwal S., Jayaraman S., and Gursky O., Electrostatic effects on the stability of discoidal high-density lipoproteins, Biochemistry. (2005) 44, no. 30, 10218–10226, 2-s2.0-23044438025, https://doi.org/10.1021/bi050781m.
- 24 Jayaraman S., [email protected], Gantz D. L., and Gursky O., Effects of salt on the thermal stability of human plasma high-density lipoprotein, Biochemistry. (2006) 45, no. 14, 4620–4628, https://doi.org/10.1021/bi0524565.
- 25 Gorshkova I. N., [email protected], Liu T., Kan H.-Y., Chroni A., Zannis V. I., and Atkinson D., Structure and stability of apolipoprotein A-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation, Biochemistry. (2006) 45, no. 4, 1242–1254, https://doi.org/10.1021/bi051669r.
- 26 Raffaï R., Weisgraber K. H., MacKenzie R., Rupp B., Rassart E., Hirama T., Innerarity T. L., and Milne R., [email protected], Binding of an antibody mimetic of the human low density lipoprotein receptor to apolipoprotein E is governed through electrostatic forces. Studies using site-directed mutagenesis and molecular modeling, Journal of Biological Chemistry. (2000) 275, no. 10, 7109–7116, https://doi.org/10.1074/jbc.275.10.7109.
- 27 Saito H., Dhanasekaran P., Nguyen D., Baldwin F., Weisgraber K. H., Wehrli S., Phillips M. C., and Lund-Katz S., Characterization of the heparin binding sites in human apolipoprotein E, Journal of Biological Chemistry. (2003) 278, no. 17, 14782–14787, 2-s2.0-0038690329, https://doi.org/10.1074/jbc.M213207200.
- 28 Boucher J. G., Nguyen T., and Sparks D. L., Lipoprotein electrostatic properties regulate hepatic lipase association and activity, Biochemistry and Cell Biology. (2007) 85, no. 6, 696–708, 2-s2.0-38849169686, https://doi.org/10.1139/O07-137.
- 29 Sparks D. L., Chatterjee C., Young E., Renwick J., and Pandey N. R., Lipoprotein charge and vascular lipid metabolism, Chemistry and Physics of Lipids. (2008) 154, no. 1, 1–6, 2-s2.0-45049088070, https://doi.org/10.1016/j.chemphyslip.2008.04.006.
- 30 Lee-Rueckert M., Lappalainen J., Leinonen H., Pihlajamaa T., Jauhiainen M., and Kovanen P. T., [email protected], Acidic extracellular environments strongly impair ABCA1-mediated cholesterol efflux from human macrophage foam cells, Arteriosclerosis, Thrombosis, and Vascular Biology. (2010) 30, no. 9, 1766–1772, https://doi.org/10.1161/ATVBAHA.110.211276.
- 31 Schumaker V. N. and Puppione D. L., Sequential flotation ultracentrifugation, Methods in Enzymology. (1986) 128, 155–170, 2-s2.0-0022556074.
- 32 Benjwal S., Verma S., Röhm K. H., and Gursky O., Monitoring protein aggregation during thermal unfolding in circular dichroism experiments, Protein Science. (2006) 15, no. 3, 635–639, 2-s2.0-33644499478, https://doi.org/10.1110/ps.051917406.
- 33 Jayaraman S., Gantz D., and Gursky O., Structural basis for thermal stability of human low-density lipoprotein, Biochemistry. (2005) 44, no. 10, 3965–3971, 2-s2.0-14844357602, https://doi.org/10.1021/bi047493v.
- 34 Perez-Jimenez R., Godoy-Ruiz R., Ibarra-Molero B., and Sanchez-Ruiz J. M., The efficiency of different salts to screen charge interactions in proteins: a Hofmeister effect?, Biophysical Journal. (2004) 86, no. 4, 2414–2429, 2-s2.0-1942519360.
- 35 Dominy B. N., Perl D., Schmid F. X., and Brooks C. L., The effects of ionic strength on protein stability: the cold shock protein family, Journal of Molecular Biology. (2002) 319, no. 2, 541–554, 2-s2.0-0036303785, https://doi.org/10.1016/S0022-2836(02)00259-0.
- 36 Kumar S. and Nussinov R., Relationship between ion pair geometries and electrostatic strengths in proteins, Biophysical Journal. (2002) 83, no. 3, 1595–1612, 2-s2.0-0036708467.
- 37 Makhatadze G. I., Loladze V. V., Ermolenko D. N., Chen X., and Thomas S. T., Contribution of surface salt bridges to protein stability: guidelines for protein engineering, Journal of Molecular Biology. (2003) 327, no. 5, 1135–1148, 2-s2.0-0037432563, https://doi.org/10.1016/S0022-2836(03)00233-X.
- 38 Dominy B. N., Minoux H., and Brooks C. L., An electrostatic basis for the stability of thermophilic proteins, Proteins. (2004) 57, no. 1, 128–141, 2-s2.0-4444362321, https://doi.org/10.1002/prot.20190.
- 39 Linsel-Nitschke P. and Tall A. R., HDL as a target in the treatment of atherosclerotic cardiovascular disease, Nature Reviews Drug Discovery. (2005) 4, no. 3, 193–205, 2-s2.0-14944381287, https://doi.org/10.1038/nrd1658.
- 40 Guha M., Gantz D. L., and Gursky O., [email protected], Effect of fatty acyl chain length, unsaturation and pH on the stability of discoidal high-density lipoproteins, Journal of Lipid Research. (2008) 49, no. 8, 1752–1761, https://doi.org/10.1194/jlr.M800106-JLR200.
- 41 Hammel M., Laggner P., and Prassl R., Structural characterisation of nucleoside loaded low density lipoprotein as a main criterion for the applicability as drug delivery system, Chemistry and Physics of Lipids. (2003) 123, no. 2, 193–207, 2-s2.0-0037390497, https://doi.org/10.1016/S0009-3084(03)00002-1.
- 42 Ponnappa B. C. and Israel Y., Targeting Kupffer cells with antisense oligonucleotides, Front Biosci. (2002) 7, e223–e233, 2-s2.0-0036584641.
- 43 Gao X., Yuan S., Jayaraman S., and Gursky O., Differential stability of high-density lipoprotein subclasses: Effects of particle size and protein composition, Journal of Molecular Biology. (2009) 387, no. 3, 628–638, 2-s2.0-62049085675, https://doi.org/10.1016/j.jmb.2009.02.036.
- 44 Parks S. K., [email protected], Chiche J., and Pouyssegur J., [email protected], pH control mechanisms of tumor survival and growth, Journal of Cellular Physiology. (2011) 226, no. 2, 299–308, https://doi.org/10.1002/jcp.22400.