pH-, temperature- and ion-dependent oligomerization of Sulfolobus solfataricus recombinant amidase: a study with site-specific mutants
Laura Politi
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorEmilia Chiancone
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorLaura Giangiacomo
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorLaura Cervoni
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorAnna Scotto d’abusco
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorStefano Scorsino
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorCorresponding Author
Roberto Scandurra
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorLaura Politi
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorEmilia Chiancone
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorLaura Giangiacomo
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorLaura Cervoni
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorAnna Scotto d’abusco
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorStefano Scorsino
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorCorresponding Author
Roberto Scandurra
Dipartimento di Scienze Biochimiche ’A.Rossi-Fanelli’ Sapienza Università di Roma Ple A. Moro 5 00185 Roma, Italy , uniroma1.it
Search for more papers by this authorAbstract
Recombinant amidase from Sulfolobus solfataricus occurred as a dimer of 110 kDa comprising identical subunits. Only dimers were present at pHs above 7.0, but with decreasing pH, dimers associated into octamers, with complete oligomerization occurring at pH 3.0. Oligomerization showed reversible temperature-dependence, with octamer formation increasing with temperature from 36 °C to between 70 and 80° C. Increasing salt concentrations, favored dissociation of the octamers. Among the three investigated factors affecting the dimer–octamer equilibrium, the most important was pH. Among four mutants obtained by site-specific mutagenesis and selection for pH and temperature sensitivity, the T319I and D487N mutant amidases, like that of the native Sulfolobus solfataricus, responded to changes in pH and temperature with a conformational change affecting the dimer–octamer equilibrium. The Y41C and L34P mutant amidases were unaffected by pH and temperature, remaining always in the dimeric state. The differences among mutants in protein conformation must be related to the position of the introduced mutation. Although the L34P and Y41C mutations are located in the helical region 33–48 (LLKLQLESYERLDSLP), which is close to the amino-terminal segment of the protein, the T319I mutation is located in a strand on the surface of the protein, which is far from, and opposite to, the amino-terminal segment. The D487N mutation is located in the center of the protein, far distant from the 33–48 segment. These observations suggest that the segment of the protein closest to the amino-terminus plays a key role in the association of dimers into octamers.
References
- R1 Anderson S. and Weber G., The reversibile acid dissociation and hybridization of lactic dehydrogenase, Arch. Biochem. Biophys.(1966) 116, 207–223.
- R2
Bracey M.H.,
Hanson M.A.,
Masuda K.R.,
Stevens R.C., and
Cravatt B.F., Structural adaptation in a membrane enzyme that terminates endocannabinoid signaling, Science. (2002) 296, 1793–1796.
10.1126/science.1076535 Google Scholar
- R3 Cai G., Zhu S., Wang X., and Jiang W., Cloning, sequence analysis and expression of the gene encoding a novel wide-spectrum amidase belonging to the amidase signature superfamily from Achromobacter xylosoxidans, FEMS Microbiol. Lett.(2005) 249, 15–21.
- R4 Calvete J.J., Thole H.H., Raida M., Urbane C., and Romero A., Molecular characterization and crystallization of Diocleinae lectins, Biochim. Biophys. Acta. (1999) 1430, 367–375.
- R5 Chebrou H., Bigey F., Arnaud A., and Galzy P., Study of the amidase signature group, Biochim. Biophys. Acta. (1996) 1298, 285–293.
- R6 Chen R. and Weng Z., Docking unbound protein using shape complementary, desolvation and electrostatics, Proteins. (2002) 47, 281–294.
- R7 Cravatt B.F., Giang D.K., Mayfield S.P., Boger D.L., Lerner R.A., and Gilula N.B., Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides, Nature. (1996) 384, 83–87.
- R8 Curnow A.W., Hong K., Yuan R., Kim S., Martins O., Winkler W., Henkin T.M., and Soll D., Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation, Proc. Natl. Acad. Sci. USA. (1997) 94, 11819–11826.
- R9 Fariselli P., Pazos F., Valencia A., and Casadio R., Prediction of protein–protein interaction sites in heterocomplexes with neural networks, Eur. J. Biochem.(2002) 269, 1356–1361.
- R10 Gaffney T.D., Da Costa E Silva O., Yamada T., and Kosuge T., Indolacetic acid operon of Pseudomonas syringae subsp. savastanoi: transcription analysis and promoter identification., J. Bacteriol.(1990) 172, 5593–5601.
- R11 Gill S. and von Hippel P.H., Calculation of protein extinction coefficients from amino acid sequence data, Anal. Biochem.(1989) 182, 319–326.
- R12 Gomi K., Kitamoto K., and Kumagai C., Cloning and molecular characterization of the acetamidase-encoding gene (amdS) from Aspergillus orizae, Gene. (1991) 108, 91–98.
- R13 Gopalakrishna K.N., Stewart B.H., Kneen M.M., Andricopulo A.D., Kenyon G.L., and Mcleish M.J., Mandelamide hydrolase from Pseudomonas putida: characterization of a new member of the amidase signature family, Biochemistry. (2004) 43, 7725–7735.
- R14
Hochgrebe T.,
Pankhurst G.J.,
Wilce J., and
Easterbrook-Smith S.B., pH-Dependent changes in the in vitro ligand-binding properties and structure of human clusterin, Biochemistry. (2000) 15, 1411–1419.
10.1021/bi991581b Google Scholar
- R15 Jiang Y. and Cronan J.E., Expression cloning and demonstration of Enterococcus faecalis lipoamidase (pyruvate dehydrogenase inactivase) as a Ser-Ser-Lys triad amidohydrolase, J. Biol. Chem.(2005) 280, 2244–2256.
- R16 Kida H., Sugano Y., Iizuka R., Fujihashi M., Yohda M., and Miki K., Structural and molecular characterization of the prefoldin beta subunit from Thermococcus strain KS-1, J. Mol. Biol.(2008) 383, 465–474.
- R17 Koutek B., Prestwich G.D., Howlett A.C., Chin S.A., Salehani D., Akhavan N., and Deutsch D.G., Inhibitors of arachidonoyl ethanolamide hydrolysis., J. Biol. Chem.(1994) 269, 22937–22940.
- R18 Labahn J., Neumann S., Buldt G., Kula M.R., and Granzin J., An alternative mechanism for amidase signature enzymes, J. Mol. Biol.(2002) 322, 1053–1064.
- R19 Leatherbarrows R., ENZFITTER. A non linear regression data analysis program for the IBM-PC., 1987, Elsevier-Biosoft, Cambridge, U.K..
- R20 Lew S., Caputo G.A., and London E., The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix–helix interactions, Biochemistry. (2003) 42, 10833–10842.
- R21 Madern D., Ebel C., Dale H.A., Lien T., Steen I.H., Birkeland N.K., and Zaccai G., Differences in the oligomeric states of the LDH-like MalDH from the hyperthermophilic archaea Methanococcus jannaschii and Archaeoglobus fulgidus, Biochemistry. (2001) 40, 10310–10316.
- R22 Mayaux J.F., Cerebelaud E., Soubrier F., Yeh P., Blanche F., and Petre D., Purification, cloning, and primary structure of new enantiomer-selective amidase from Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase, J. Bacteriol.(1991) 173, 6694–6704.
- R23 McKinney M.K. and Cravatt B.F., Structure and function of fatty acid amide hydrolase, Annu. Rev. Biochem.(2005) 74, 411–432.
- R24 Mukaiyama A., Haruki M., Ota M., Koga Y., and Takano K., A hyperthermophilic protein acquires function at the cost of stability, Biochemistry. (2006) 45, 12673–12679.
- R25 Newman P.J., Derbes R.S., and Aster R.H., The human platelet alloantigens, PIA1and PIA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing, J. Clin. Invest.(1989) 83, 1778–1781.
- R26 Patricelli M.P. and Cravatt B.F., Clarifying the catalytic roles of conserved residues in the amidase signature family, J. Biol. Chem.(2000) 275, 19177–19180.
- R27 Ralston G.B., Temperature and pH dependence of the self-association of human spectrin, Biochemistry. (1991) 30, 4179–4186.
- R28 Sali A. and Blundell T.L., Comparative protein modeling by satisfaction of spatial restraints, J. Mol. Biol.(1993) 234, 779–815.
- R29
Schon A.,
Kannangara C.G.,
Gough S., and
Soll D., Protein biosynthesis in organelles requires misaminoacylation of tRNA, Nature. (1998) 331, 187–190.
10.1038/331187a0 Google Scholar
- R30 Schuck P. and Rossmanith P., Determination of the sedimentation coefficient distribution by least-squares boundary modeling, Biopolymers. (2000) 54, 328–341.
- R31 Scotto d’Abusco A., Ammendola S., Scandurra R., and Politi L., Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus, Extremophiles. (2001) 5, 183–192.
- R32 Scotto d’Abusco A., Casadio R., Tasco G. et al., Oligomerization of Sulfolobus solfataricus signature amidase is promoted by acidic pH and high temperature, Archaea. (2005) 1, 411–423.
- R33 Shin S., Yun Y.S., Koo H.M., Kim Y.S., Choi K.Y., and Oh B.H., Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad, J. Biol. Chem.(2003) 278, 24937–24943.
- R34 Suzuki Y. and Ohta H., Identification of a thermostable and enantioselective amidase from the thermoacidophilic archaeon Sulfolobus tokadaii Strain 7, Protein Expr. Purif.(2006) 45, 368–373.
- R35 Valina A.L., Mazumder-Shivakumar D., and Bruice T.C., Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate, Biochemistry. (2004) 43, 15657–15672.
- R36 Vihinen M., Relationship of protein flexibility to thermostbility, Protein Eng.(1987) 1, 477–480.
- R37 Wah D.A., Romero A., Gallego Del Sol F., Cavad B.S., Ramos M.V., Grangeiro T.B., Sampaio A.H., and Calvete J.J., Crystal structure of native an Cd/Cd-substituted Dioclea guaianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association., J. Mol. Biol.(2001) 310, 885–894.
- R38 Ward C.M., Kestin A.S., and Newman P.J., A Leu262Pro mutation in the integrin b3 subunit results in an aiib-b3 complex that binds fibrin but not fibrinogen, Blood. (2000) 96, 161–169.
- R39 Wei B.Q., Mikkelsen T.S., Mc Kinney M.K., Lander E.S., and Cravatt B.F., A second fatty acid amide hydrolase with variable distribution among placental mammals, J. Biol. Chem.(2006) 281, 36569–36578.
- R40 Wrba A., Schweiger A., Schultes V., Jaenicke R., and Zbvodsky P., Extremely thermostable D-glyceraldeheyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima, Biochemistry. (1990) 29, 7584–7592.
- R41 Zeng X., Zhu H., Lashuel H.A., and Hu J.C., Oligomerization properties of GCN4 leucine zipper e and g position mutants, Protein Sci.(1997) 6, 2218–2226.