Rare Earth-Activated Silica-Based Nanocomposites
C. Armellini
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorA. Chiappini
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorA. Chiasera
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorCorresponding Author
M. Ferrari
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorY. Jestin
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorM. Mortier
Laboratoire de Chimie Appliquéede de l′Etat Solide, Ecole Nationale Supérieure de Chimie de Paris (ENSCP), UMR-CNRS 7574, 11 rue Pierre et Marie Curie, Paris 75231, France enscp.fr
Search for more papers by this authorE. Moser
Dipartimento di Fisica, Università degli Studi di Trento, Gruppo CSMFO, Via Sommarive, Povo, Trento 14-38100, Italy unitn.it
Search for more papers by this authorR. Retoux
Laboratoire CRISMAT, UMR 6508, ENSICAEN, 6 Boulevard du Maréchal Juin, Caen Cedex 14050, France ensicaen.fr
Search for more papers by this authorG. C. Righini
CNR-IFAC, Istituto di Fisica Applicata, Nello Carrara, via Madonna del Piano, Sesto Fiorentino, Firenze 10-50019, Italy cnr.it
CNR, Dipartimento Materiali e Dispositivi, via dei Taurini 19, Roma 00185, Italy cnr.it
Search for more papers by this authorC. Armellini
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorA. Chiappini
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorA. Chiasera
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorCorresponding Author
M. Ferrari
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorY. Jestin
CSMFO group, CNR-IFN, Istituto di Fotonica e Nanotecnologie, via Sommarive, Povo, Trento 14-38050, Italy cnr.it
Search for more papers by this authorM. Mortier
Laboratoire de Chimie Appliquéede de l′Etat Solide, Ecole Nationale Supérieure de Chimie de Paris (ENSCP), UMR-CNRS 7574, 11 rue Pierre et Marie Curie, Paris 75231, France enscp.fr
Search for more papers by this authorE. Moser
Dipartimento di Fisica, Università degli Studi di Trento, Gruppo CSMFO, Via Sommarive, Povo, Trento 14-38100, Italy unitn.it
Search for more papers by this authorR. Retoux
Laboratoire CRISMAT, UMR 6508, ENSICAEN, 6 Boulevard du Maréchal Juin, Caen Cedex 14050, France ensicaen.fr
Search for more papers by this authorG. C. Righini
CNR-IFAC, Istituto di Fisica Applicata, Nello Carrara, via Madonna del Piano, Sesto Fiorentino, Firenze 10-50019, Italy cnr.it
CNR, Dipartimento Materiali e Dispositivi, via dei Taurini 19, Roma 00185, Italy cnr.it
Search for more papers by this authorAbstract
Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i) Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii) core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.
References
- 1 Moriarty P., Nanostructured materials, Reports on Progress in Physics. (2001) 64, 297–381, https://doi.org/10.1088/0034-4885/64/3/201.
- 2 Meltzer R. S., Yen W. M., Zheng H. et al., Effect of the matrix on the radiative lifetimes of rare earth doped nanoparticles embedded in matrices, Journal of Luminescence. (2001) 94-95, 217–220, https://doi.org/10.1016/S0022-2313(01)00281-2.
- 3 Meltzer R. S., Feofilov S. P., Tissue B., and Yuan H. B., Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium, Physical Review B. (1999) 60, no. 20, R14012–R14015.
- 4 Mortier M. and Auzel F., Rare-earth doped transparent glass-ceramics with high cross-sections, Journal of Non-Crystalline Solids. (1999) 256-257, 361–365, https://doi.org/10.1016/S0022-3093(99)00475-5.
- 5 Wang Y. and Ohwaki J., New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion, Applied Physics Letters. (1993) 63, no. 24, 3268–3270, https://doi.org/10.1063/1.110170.
- 6 Gonçalves M. C., Santos L. F., and Almeida R. M., Rare-earth-doped transparent glass ceramics, Comptes Rendus Chimie. (2002) 5, no. 12, 845–854, https://doi.org/10.1016/S1631-0748(02)01457-1.
- 7 Mortier M., Between glass and crystal: glass-ceramics, a new way for optical materials, Philosophical Magazine B. (2002) 82, no. 6, 745–753, https://doi.org/10.1080/13642810110085136.
- 8 Auzel F. and Goldner P., Towards rare-earth clustering control in doped glasses, Optical Materials. (2001) 16, no. 1-2, 93–103, https://doi.org/10.1016/S0925-3467(00)00064-1.
- 9 Tikhomirov V. K., Rodríguez V. D., Méndez-Ramos J., Núñez P., and Seddon A. B., Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics, Optical Materials. (2004) 27, no. 3, 543–547, https://doi.org/10.1016/j.optmat.2004.07.004.
- 10 Kukkonen L. L., Reaney I. M., Furniss D., Pellatt M. G., and Seddon A. B., Nucleation and crystallisation of transparent, erbium III-doped, oxyfluoride glass-ceramics, Journal of Non-Crystalline Solids. (2001) 290, no. 1, 25–31, https://doi.org/10.1016/S0022-3093(01)00731-1.
- 11 Mattarelli M., Tikhomirov V. K., Seddon A. B. et al., Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties, Journal of Non-Crystalline Solids. (2004) 345-346, 354–358, https://doi.org/10.1016/j.jnoncrysol.2004.08.043.
- 12 Liu F., Wang Y., Chen D., and Yu Y., Investigation on crystallization kinetics and microstructure of novel transparent glass ceramics containing Nd:NaYF4 nano-crystals, Materials Science and Engineering B. (2007) 136, no. 2-3, 106–110, https://doi.org/10.1016/j.mseb.2006.09.012.
- 13 Dantelle G., Mortier M., Vivien D., and Patriarche G., Influence of Ce3+ doping on the structure and luminescence of Er3+-doped transparent glass-ceramics, Optical Materials. (2006) 28, no. 6-7, 638–642, https://doi.org/10.1016/j.optmat.2005.09.008.
- 14 Mortier M., Bensalah A., Dantelle G., Patriarche G., and Vivien D., Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: synthesis and optical properties, Optical Materials. (2007) 29, no. 10, 1263–1270, https://doi.org/10.1016/j.optmat.2005.12.014.
- 15 Hayashi H., Tanabe S., and Hanada T., 1.4 μm band emission properties of Tm3+ ions in transparent glass-ceramics containing PbF2 nanocrystals for S-band amplifier, Journal of Applied Physics. (2001) 89, no. 2, 1041–1045, https://doi.org/10.1063/1.1335645.
- 16 Tikhomirov V. K., Furniss D., Seddon A. B. et al., Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics, Applied Physics Letters. (2002) 81, no. 11, 1937–1939, https://doi.org/10.1063/1.1497196.
- 17 Oishi H., Benino Y., and Komatsu T., Preparation and optical properties of transparent tellurite based glass-ceramics doped by Er3+ and Eu3+, Physics and Chemistry of Glasses. (1999) 40, no. 4, 212–218.
- 18 Kępiński L. and Wołcyrz M., Nanocrystalline rare earth silicates: structure and properties, Materials Chemistry and Physics. (2003) 81, no. 2-3, 396–400, https://doi.org/10.1016/S0254-0584(03)00031-2.
- 19 Que Q., Zhou Y., Lam Y. L. et al., Photoluminescence of erbium oxide nanocrystals/Tio2/γ-glycidoxypropyltrimethoxysilane (GLYMO) composite sol-gel thin films derived at low temperature, Journal of Applied Physics. (2001) 89, no. 5, 3058–3060, https://doi.org/10.1063/1.1343516.
- 20 Strohhöfer C., Fick J., Vasconcelos H. C., and Almeida R. M., Active optical properties of Er-containing crystallites in sol-gel derived glass films, Journal of Non-Crystalline Solids. (1998) 226, no. 1-2, 182–191.
- 21 Langlet M., Coutier C., Fick J. et al., Sol-gel thin film deposition and characterization of a new optically active compound: Er2Ti2O7, Optical Materials. (2001) 16, no. 4, 463–473, https://doi.org/10.1016/S0925-3467(01)00007-6.
- 22 Jestin Y., Afify N., Armellini C. et al., Er3+ activated silica-hafnia glass-ceramics planar waveguides, 6183, Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, April 2006, Strasbourg, France, 1–8, Proceedings of SPIE, https://doi.org/10.1117/12.664610.
- 23 Jestin Y., Arfuso-Duverger C., Armellini C. et al., Ceramization of erbium activated planar waveguides by bottom up technique, 6469, Optical Components and Materials IV, January 2007, San Jose, Calif, USA, 1–9, Proceedings of SPIE, https://doi.org/10.1117/12.702057.
- 24 Jestin Y., Armellini C., Chiappini A. et al., Erbium activated HfO2 based glass-ceramics waveguides for photonics, Journal of Non-Crystalline Solids. (2007) 353, no. 5–7, 494–497, https://doi.org/10.1016/j.jnoncrysol.2006.10.016.
- 25 Okamura Y., Yoshinaka S., and Yamamoto S., Measuring mode propagation losses of integrated optical waveguides: a simple method, Applied Optics. (1983) 22, no. 23, 3892–3894.
- 26 Gonçalves R. R., Carturan G., Zampedri L. et al., Sol-gel erbium-doped silica-hafnia planar and channel waveguides, 4990, Rare-Earth-Doped Materials and Devices VII, January 2003, San Jose, Calif, USA, 111–120, Proceedings of SPIE, https://doi.org/10.1117/12.478340.
- 27 Afify N. D., Dalba G., Armellini C., Ferrari M., Rocca F., and Kuzmin A., Local structure around Er3+ in SiO2-HfO2 glassy waveguides using EXAFS, Physical Review B. (2007) 76, 8, 024114, https://doi.org/10.1103/PhysRevB.76.024114.
- 28 Zampedri L., Righini G. C., Portales H. et al., Sol-gel-derived Er-activated SiO2-HfO2 planar waveguides for 1.5 μm application, Journal of Non-Crystalline Solids. (2004) 345-346, 580–584, https://doi.org/10.1016/j.jnoncrysol.2004.08.088.
- 29 Chiappini A., Armellini C., Bhaktha S. N. B. et al., Fabrication and optical assessment of sol-gel-derived photonic bandgap dielectric structures, 6182, Photonic Crystal Materials and Devices III, April 2006, Strasbourg, France, 1–10, Proceedings of SPIE, https://doi.org/10.1117/12.663445.
- 30 Chiappini A., Armellini C., Chiasera A. et al., Design of photonic structures by sol-gel-derived silica nanospheres, Journal of Non-Crystalline Solids. (2007) 353, no. 5–7, 674–678, https://doi.org/10.1016/j.jnoncrysol.2006.10.034.
- 31 Bogush G. H., Tracy M. A., and Zukoski IV C. F., Preparation of monodisperse silica particles: control of size and mass fraction, Journal of Non-Crystalline Solids. (1988) 104, no. 1, 95–106, https://doi.org/10.1016/0022-3093(88)90187-1.
- 32 de Dood M. J. A., Berkhout B., van Kats C. M., Polman A., and van Blaaderen A., Acid-based synthesis of monodisperse rare-earth-doped colloidal SiO2 spheres, Chemistry of Materials. (2002) 14, no. 7, 2849–2853, https://doi.org/10.1021/cm0211599.
- 33 Miniscalco W. J., Erbium-doped glasses for fiber amplifiers at 1500 nm, Journal of Lightwave Technology. (1991) 9, no. 2, 234–250, https://doi.org/10.1109/50.65882.
- 34 de Dood M. J. A., Slooff L. H., Polman A., Moroz A., and van Blaaderen A., Modified spontaneous emission in erbium-doped SiO2 spherical colloids, Applied Physics Letters. (2001) 79, no. 22, 3585–3587, https://doi.org/10.1063/1.1419033.
- 35 de Dood M. J. A., Slooff L. H., Polman A., Moroz A., and van Blaaderen A., Local optical density of states in SiO2 spherical microcavities: theory and experiment, Physical Review A. (2001) 64, no. 3, 7, 033807, https://doi.org/10.1103/PhysRevA.64.033807.