In Situ Nitroxide-Mediated Polymerized Poly(acrylic acid) as a Stabilizer/Compatibilizer Carbon Nanotube/Polymer Composites
Vitaliy Datsyuk
Equipe de Physico-Chimie des Polymères (EPCP), Institut Pluridisciplinaire de Recherche sur l′Environnement et les Matériaux (IPREM), UMR 5254 CNRS, Université de Pau et Pays de l′Adour, Hélioparc Pau-Pyrénées, 2 Avenue Angot, Pau Cedex 09 64053, France univ-pau.fr
Search for more papers by this authorCorresponding Author
Laurent Billon
Equipe de Physico-Chimie des Polymères (EPCP), Institut Pluridisciplinaire de Recherche sur l′Environnement et les Matériaux (IPREM), UMR 5254 CNRS, Université de Pau et Pays de l′Adour, Hélioparc Pau-Pyrénées, 2 Avenue Angot, Pau Cedex 09 64053, France univ-pau.fr
Search for more papers by this authorChristelle Guerret-Piécourt
Equipe de Physico-Chimie des Polymères (EPCP), Institut Pluridisciplinaire de Recherche sur l′Environnement et les Matériaux (IPREM), UMR 5254 CNRS, Université de Pau et Pays de l′Adour, Hélioparc Pau-Pyrénées, 2 Avenue Angot, Pau Cedex 09 64053, France univ-pau.fr
Search for more papers by this authorSylvie Dagréou
Equipe de Physico-Chimie des Polymères (EPCP), Institut Pluridisciplinaire de Recherche sur l′Environnement et les Matériaux (IPREM), UMR 5254 CNRS, Université de Pau et Pays de l′Adour, Hélioparc Pau-Pyrénées, 2 Avenue Angot, Pau Cedex 09 64053, France univ-pau.fr
Search for more papers by this authorNicolas Passade-Boupatt
Groupement de Recherche de Lacq, ARKEMA, LACQ 64170, France arkema.com
Search for more papers by this authorSylvain Bourrigaud
Groupement de Recherche de Lacq, ARKEMA, LACQ 64170, France arkema.com
Search for more papers by this authorOlivier Guerret
Groupement de Recherche de Lacq, ARKEMA, LACQ 64170, France arkema.com
Search for more papers by this authorLaurence Couvreur
Groupement de Recherche de Lacq, ARKEMA, LACQ 64170, France arkema.com
Search for more papers by this authorVitaliy Datsyuk
Equipe de Physico-Chimie des Polymères (EPCP), Institut Pluridisciplinaire de Recherche sur l′Environnement et les Matériaux (IPREM), UMR 5254 CNRS, Université de Pau et Pays de l′Adour, Hélioparc Pau-Pyrénées, 2 Avenue Angot, Pau Cedex 09 64053, France univ-pau.fr
Search for more papers by this authorCorresponding Author
Laurent Billon
Equipe de Physico-Chimie des Polymères (EPCP), Institut Pluridisciplinaire de Recherche sur l′Environnement et les Matériaux (IPREM), UMR 5254 CNRS, Université de Pau et Pays de l′Adour, Hélioparc Pau-Pyrénées, 2 Avenue Angot, Pau Cedex 09 64053, France univ-pau.fr
Search for more papers by this authorChristelle Guerret-Piécourt
Equipe de Physico-Chimie des Polymères (EPCP), Institut Pluridisciplinaire de Recherche sur l′Environnement et les Matériaux (IPREM), UMR 5254 CNRS, Université de Pau et Pays de l′Adour, Hélioparc Pau-Pyrénées, 2 Avenue Angot, Pau Cedex 09 64053, France univ-pau.fr
Search for more papers by this authorSylvie Dagréou
Equipe de Physico-Chimie des Polymères (EPCP), Institut Pluridisciplinaire de Recherche sur l′Environnement et les Matériaux (IPREM), UMR 5254 CNRS, Université de Pau et Pays de l′Adour, Hélioparc Pau-Pyrénées, 2 Avenue Angot, Pau Cedex 09 64053, France univ-pau.fr
Search for more papers by this authorNicolas Passade-Boupatt
Groupement de Recherche de Lacq, ARKEMA, LACQ 64170, France arkema.com
Search for more papers by this authorSylvain Bourrigaud
Groupement de Recherche de Lacq, ARKEMA, LACQ 64170, France arkema.com
Search for more papers by this authorOlivier Guerret
Groupement de Recherche de Lacq, ARKEMA, LACQ 64170, France arkema.com
Search for more papers by this authorLaurence Couvreur
Groupement de Recherche de Lacq, ARKEMA, LACQ 64170, France arkema.com
Search for more papers by this authorAbstract
Carbon nanotube (CNT) polymer composites were synthesized via in situ nitroxide-mediated diblock copolymerization. Poly(acrylic acid) (PAA) was chosen as a first block to obtain a precomposite CNT-PAA which is readily dispersible in various solvents including water. The immobilization of the stable poly(acrylic acid) alkoxyamine functionality on the nanotube surface occurs during the synthesis of the first block without CNT prior treatment. The living character of this block is established by spectroscopic methods and the nature of the CNT/PAA interaction is discussed. This living first block offers the opportunity to reinitiate the polymerization of a second block that can be chosen among a wide range of monomers. This versatility is illustrated with a second block containing methyl acrylate (MA) or styrene (S). Scanning and transmission electron microscopies confirm good CNT dispersion in the polymer network, while transmission electron microscopy also spots the anchorage locations of PAA on the CNT surface. Such nanotubes wrapped by diblock copolymers can be dispersed in various polymer matrices to create CNT—polymer composites. Conductivity measurements show that these composites obey a percolation-like power law with a low percolation threshold (less than 0.5 vol%) and a high maximum conductivity (up to 1.5 S/cm at room temperature).
References
- 1 Wagner H. D., Lourie O., Feldman Y., and Tenne R., Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Applied Physics Letters. (1998) 72, no. 2, 188–190, https://doi.org/10.1063/1.120680.
- 2 Andrews R., Jacques D., Rao A. M. et al., Nanotube composite carbon fibers, Applied Physics Letters. (1999) 75, no. 9, 1329–1331, https://doi.org/10.1063/1.124683.
- 3 Qian D., Dickey E. C., Andrews R., and Rantell T., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Applied Physics Letters. (2000) 76, no. 20, 2868–2870, https://doi.org/10.1063/1.126500.
- 4
Sandler J.,
Shaffer M. S. P.,
Prasse T.,
Bauhofer W.,
Schulte K., and
Windle A. H., Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical
properties, Polymer. (1999) 40, no. 21, 5967–5971, https://doi.org/10.1016/S0032-3861(99)00166-4.
10.1016/S0032-3861(99)00166-4 Google Scholar
- 5 Wong E. W., Sheehan P. E., and Lieber C. M., Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes, Science. (1997) 277, no. 5334, 1971–1975, https://doi.org/10.1126/science.277.5334.1971.
- 6 Ghannam L., Garay H., Shanahan M. E. R., François J., and Billon L., A new pigment type: colored diblock copolymer-mica composites, Chemistry of Materials. (2005) 17, no. 15, 3837–3843, https://doi.org/10.1021/cm0478024.
- 7 Inoubli R., Dagréou S., Khoukh A., Roby F., Peyrelasse J., and Billon L., ‘Graft from’ polymerization on colloidal silica particles: elaboration of alkoxyamine grafted surface by in situ trapping of carbon radicals, Polymer. (2005) 46, no. 8, 2486–2496, https://doi.org/10.1016/j.polymer.2005.01.032.
- 8 Yokoyama H., Miyamae T., Han S. et al., Spontaneously formed hydrophilic surfaces by segregation of block copolymers with watersoluble blocks, Macromolecules. (2005) 38, no. 12, 5180–5189, https://doi.org/10.1021/ma050473w.
- 9 Shvartzman-Cohen R., Nativ-Roth E., Baskaran E., Levi-Kalisman Y., Szleifer I., and Yerushalmi-Rozen R., Selective dispersion of single-walled carbon nanotubes in the preence of polymers: the role of molecular and colloidal length scales, Journal of American Chemical Society. (2004) 126, no. 45, 14850–14857, https://doi.org/10.1021/ja046377c.
- 10 Lou X., Detrembleur C., Sciannamea V., Pagnoulle C., and Jérôme R., Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes, Polymer. (2004) 45, no. 18, 6097–6102, https://doi.org/10.1016/j.polymer.2004.06.050.
- 11 Liu Y., Yao Z., and Adronov A., Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling, Macromolecules. (2005) 38, no. 4, 1172–1179, https://doi.org/10.1021/ma048273s.
- 12 Haggenmueller R., Gommans H. H., Rinzler A. G., Fosher J. E., and Winey K. I., Aligned single-walled carbon nanotubes in composites by melt processing methods, Chemical Physics Letters. (2000) 330, no. 3-4, 219–225, https://doi.org/10.1016/S0009-2614(00)01013-7.
- 13 Kymakis E., Alexandou I., and Amaratunga G. A. J., Single-walled carbon nanotubes—polymer composites: electrical, optical and structural investigation, Synthetic Metals. (2002) 127, no. 1–3, 59–62, https://doi.org/10.1016/S0379-6779(01)00592-6.
- 14 Lin Y., Zhou B., Shiral Fernando K. A., Liu P., Allard L. F., and Sun Y-P, Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer, Macromolecules. (2003) 36, no. 19, 7199–7204, https://doi.org/10.1021/ma0348876.
- 15 Park S. J., Cho M. S., Lim S. T., Cho H. J., and Jhon M. S., Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in situ bulk polymerization, Macromolecular Rapid Communications. (2003) 24, no. 18, 1070–1073, https://doi.org/10.1002/marc.200300089.
- 16 Yoon K. R., Kim W.-J., and Choi I. S., Functionalization of shortened single-walled carbon nanotubes with poly (p-dioxanone) by “Grafting-From” approach, Macromolecular Chemistry and Physics. (2004) 205, no. 9, 1218–1221, https://doi.org/10.1002/macp.200400077.
- 17 Baskaran D., Mays J. W., and Bratcher M. S., Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization, Angewandte Chemie International Edition. (2004) 43, no. 16, 2138–2142, https://doi.org/10.1002/anie.200353329.
- 18 Kong H., Gao C., and Yan D., Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization, Journal of Material Chemistry. (2004) 14, no. 9, 1401–1405, https://doi.org/10.1039/b401180e.
- 19 Kong H., Gao C., and Yan D., Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization, Journal of American Chemical Society. (2004) 126, no. 2, 412–413, https://doi.org/10.1021/ja0380493.
- 20 Laruelle G., Parvole J., François J., and Billon L., Block copolymer grafted-silica particles: a core/double shell hybrid inorganic/organic material, Polymer. (2004) 45, no. 15, 5013–5020, https://doi.org/10.1016/j.polymer.2004.05.030.
- 21 Karaky K., Péré E., Pouchan C., Desbrières J., Dérail C., and Billon L., Effect of the synthetic methodology on molecular architecture: from statistical to gradient copolymers, Soft Matter. (2006) 2, no. 9, 770–778, https://doi.org/10.1039/b607797h.
- 22 Laruelle G., François J., and Billon L., Self-assembly in aqueous media of amphiphilic poly acrylic acid based di-block copolymers synthesized by direct nitroxide-mediated polymerization, Macromolecular Rapid Communications. (2004) 25, no. 21, 1839–1844, https://doi.org/10.1002/marc.200400315.
- 23 Datsyuk V., Guerret-Piécourt C., Dagréou S. et al., Double walled carbon nanotube/polymer composites via in situ nitroxide mediated polymerisation of amphiphilic block copolymers, Carbon. (2005) 43, no. 4, 873–876, https://doi.org/10.1016/j.carbon.2004.10.052.
- 24 Billon L., Datsyuk V., Guerret-Piécourt C., and Guerret O., Composites materials base on carbon nanotubes and polymers matrices and process for obtaining same, 2005, WO Patent no. 108485.
- 25 Kang Y. and Taton T. A., Micelle-encapsulated carbon nanotubes: a route to nanotube composites, Journal of American Chemical Society. (2003) 125, no. 19, 5650–5651, https://doi.org/10.1021/ja034082d.
- 26 Kong H., Luo P., Gao C., and Yan D., Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly, Polymer. (2005) 46, no. 8, 2472–2485, https://doi.org/10.1016/j.polymer.2005.01.037.
- 27 Flahaut E., Bacsa R. R., Peigney A., and Laurent C., Gram-scale CCVD synthesis of doublewalled carbon nanotubes, Chemical Communication. (2003) no. 12, 1442–1443, https://doi.org/10.1039/b301514a.
- 28 Couvreur L., Lefay C., Bellenay J., Charleux B., Guerret O., and Magnet S., First nitroxide-mediated controlled free-radical polymerizaton of acrylic acid, Macromolecules. (2003) 36, no. 22, 8260–8267, https://doi.org/10.1021/ma035043p.
- 29 Shaffer M. S. P., Fan X., and Windle A. H., Dispersion and packing of carbon nanotubes, Carbon. (1998) 36, no. 11, 1603–1612, https://doi.org/10.1016/S0008-6223(98)00130-4.
- 30 Sonnenberg L., Parvole J., Billon L., Borisov O., Seitz M., and Gaub H. E., AFM-based single molecule force spectroscopy of end-grafted poly(acrylic acid) monolayers, Macromolecules. (2006) 39, no. 1, 281–288, https://doi.org/10.1021/ma0505880.
- 31 Tanodekaew S., Prasitsilp M., Swasdison S., Thavornyutikarn B., Pothsree T., and Pateepasen R., Preparation of acrylic grafted chitin for wound dressing application, Biomaterials. (2004) 25, no. 7-8, 1453–1460, https://doi.org/10.1016/j.biomaterials.2003.08.020.
- 32 Lefay C., Bellenay J., Charleux B., Guerret O., and Magnet S., End-group characterization of poly(acrylic acid) prepared by nitroxide-mediated controlled free-radical polymerization, Macromolecular Rapid Communications. (2004) 25, no. 13, 1215–1220, https://doi.org/10.1002/marc.200400117.
- 33 Baskaran D., Mays J. W., and Bratcher M. S., Polymer adsorption in the grafting reactions of hydroxyl terminal polymers with multi-walled carbon nanotubes, Polymer. (2005) 46, no. 14, 5050–5057, https://doi.org/10.1016/j.polymer.2005.04.012.
- 34 Meincke O., Kaempfer D., Weickmann H., Friedrich C., Vathauer M., and Warth H., Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene, Polymer. (2004) 45, no. 3, 739–748, https://doi.org/10.1016/j.polymer.2003.12.013.
- 35 Ogasawara T., Ishida Y., Ishikawa T., and Yokota R., Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites, Composites Part A: Applied Science and Manufacturing. (2004) 35, no. 1, 67–74, https://doi.org/10.1016/j.compositesa.2003.09.003.
- 36 Stauffer G., Introduction to Percolation Theory, 1985, Taylor & Francis, London, UK.