The Genetic Code of the Candida CTG Clade
Ana Catarina Gomes
Genomics Unit—Biocant, BiocantPark—Parque Tecnologico de Cantanhede, 3060-197 Cantanhede, Portugal
Search for more papers by this authorGabriela R. Moura
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorManuel A. S. Santos
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorAna Catarina Gomes
Genomics Unit—Biocant, BiocantPark—Parque Tecnologico de Cantanhede, 3060-197 Cantanhede, Portugal
Search for more papers by this authorGabriela R. Moura
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorManuel A. S. Santos
Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorRichard A. Calderone
Georgetown University Medical Center, Washington, DC
Search for more papers by this authorCornelius J. Clancy
Department of Medicine, Infectious Diseases Division, University of Pittsburgh, Pittsburgh, PA
Search for more papers by this authorSummary
This chapter discusses the most recent findings on the reassignment mechanism of CUG codons from leucine to serine in various Candida and non-Candida species, the so-called CTG clade. It highlights how the Candida albicans model system improves one's understanding of the evolution of the genetic code, and explains how this genetic code alteration shaped the biology of the CTG clade species. Codon reassignments show that the genetic code evolves even in organisms with complex genomes and proteomes. The codon capture theory postulates that genetic code changes result from genome G+C biases on codon usage. There is significant flexibility in the genetic code to support codon reassignment. The phenotypic diversity induced by CUG ambiguity exposes some of these virulence traits, suggesting that CUG ambiguity may be relevant to pathogenesis and that C. albicans may have evolved unique mechanisms to take advantage of its genetic code alteration. The double identity of the CUG codon implies that each protein is represented by a mixture of molecules containing Leu or Ser at CUG positions. This creates a statistical proteome whose biological implications are still poorly understood. Nevertheless, the probability of finding identical cells in nature is extremely small.
References
- Alvarez, F., C. Robello, and M. Vignali 1994. Evolution of codon usage and base contents in kinetoplastid protozoans. Mol. Biol. Evol. 11: 790–802.
- Berman, J., and P. E. Sudbery 2002. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3: 918–930.
- Butler, G., M. D. Rasmussen, M. F. Lin, M. A. Santos, S. Sakthikumar, C. A. Munro, E. Rheinbay, M. Grabherr, A. Forche, J. L. Reedy, I. Agrafioti, M. B. Arnaud, S. Bates, A. J. P. Brown, S. Brunke, M. C. Costanzo, D. A. Fitzpatrick, P. W. J. de Groot, D. Harris, L. L. Hoyer, B. Hube, F. M. Klis, C. Kodira, N. Lennard, M. E. Logue, R. Martin, A. M. Neiman, E. Nikolaou, M. A. Quail, J. Quinn, M. C. Santos, F. F. Schmitzberger, G. Sherlock, P. Shah, K. A. T. Silverstein, M. S. Skrzypek, D. Soll, R. Staggs, I. Stansfield, M. P. H. Stumpf, P. E. Sudbery, T. Srikantha, Q. Zeng, J. Berman, M. Berriman, J. Heitman, N. A. R. Gow, M. C. Lorenz, B. W. Birren, M. Kellis, and C. A. Cuomo 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657–662.
- Calderone, R. A., and W. A. Fonzi 2001. Virulence factors of Candida albicans . Trends Microbiol. 9: 327–335.
- Chiapello, H., E. Ollivier, C. Landes-Devauchelle, P. Nitschke, and J. L. Risler 1999. Codon usage as a tool to predict the cellular location of eukaryotic ribosomal proteins and aminoacyl-tRNA synthetases. Nucleic Acids Res. 27: 2848–2851.
- Edelmann, P., and J. Gallant 1977. Mistranslation in E. coli . Cell 10: 131–137.
- Ellis, J. T., and D. A. Morrison 1995. Schistosoma mansoni: patterns of codon usage and bias. Parasitology 110(Pt. 1): 53–60.
- Enjalbert, B., A. Nantel, and M. Whiteway 2003. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14: 1460–1467.
- Fitzpatrick, D. A., M. E. Logue, J. E. Stajich, and G. Butler 2006. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6: 99.
- Ghaemmaghami, S., W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K. O'Shea, and J. S. Weissman 2003. Global analysis of protein expression in yeast. Nature 425: 737–741.
- Gomes, A. C., I. Miranda, R. M. Silva, G. R. Moura, B. Thomas, A. Akoulitchev, and M. A. Santos 2007. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans . Genome Biol. 8: R206.
- Grant, P. A., D. Schieltz, M. G. Pray-Grant, D. J. Steger, J. C. Reese, J. R. Yates III, and J. L. Workman 1998. A subset of TAFIIs are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94: 45–53.
- Ikemura, T. 1982. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J. Mol. Biol. 158: 573–597.
- Ikemura, T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2: 13–34.
- Kano, A., Y. Andachi, T. Ohama, and S. Osawa 1991. Novel anticodon composition of transfer RNAs in Micrococcus luteus, a bacterium with a high genomic G + C content. Correlation with codon usage. J. Mol. Biol. 221: 387–401.
- Kawaguchi, Y., H. Honda, J. Taniguchi-Morimura, and S. Iwasaki 1989. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea . Nature 341: 164–166.
- Kimata, Y., and M. Yanagida 2004. Suppression of a mitotic mutant by tRNA-Ala anticodon mutations that produce a dominant defect in late mitosis. J. Cell Sci. 117: 2283–2293.
- Knight, R. D., S. J. Freeland, and L. F. Landweber 2001. Rewiring the keyboard: evolvability of the genetic code. Nat. Rev. Genet. 2: 49–58.
- Kurland, C., and J. Gallant 1996. Errors of heterologous protein expression. Curr. Opin. Biotechnol. 7: 489–493.
- Ladner, J. E., A. Jack, J. D. Robertus, R. S. Brown, D. Rhodes, B. F. Clark, and A. Klug 1975. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc. Natl. Acad. Sci. USA 72: 4414–4418.
- Li, M., and A. Tzagoloff 1979. Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell 18: 47–53.
- Lovett, P. S., N. P. Ambulos, Jr., W. Mulbry, N. Noguchi, and E. J. Rogers 1991. UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis . J. Bacteriol. 173: 1810–1812.
- Massey, S. E., G. Moura, P. Beltrao, R. Almeida, J. R. Garey, M. F. Tuite, and M. A. Santos 2003. Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res. 13: 544–557.
- Matsugi, J., K. Murao, and H. Ishikura 1998. Effect of B. subtilis tRNATrp on readthrough rate at an opal UGA codon. J. Biochem. 123: 853–858.
- Miranda, I., R. Rocha, M. C. Santos, D. D. Mateus, G. R. Moura, L. Carreto, and M. A. Santos 2007. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans . PLoS One 2: e996.
- Moura, G. R., T. Lima-Costa, L. Carreto, A. C. Gomes, and M. A. Santos 2007. Molecular evolution of the Candida genetic code. In C. d'Enfert and B. Hube (ed.), Candida—Comparative and Functional Genomics . Caister Academic Press, Norfolk, United Kingdom.
- Oba, T., Y. Andachi, A. Muto, and S. Osawa 1991. CGG: an unassigned or nonsense codon in Mycoplasma capricolum . Proc. Natl. Acad. Sci. USA 88: 921–925.
- Ogle, J. M., and V. Ramakrishnan 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74: 129–177.
- Ohama, T., A. Muto, and S. Osawa 1990. Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Res. 18: 1565–1569.
- Osawa, S., and T. H. Jukes 1989. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 28: 271–278.
- Osawa, S., T. H. Jukes, K. Watanabe, and A. Muto 1992. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56: 229–264.
- Panasenko, O., E. Landrieux, M. Feuermann, A. Finka, N. Paquet, and M. A. Collart 2006. The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J. Biol. Chem. 281: 31389–31398.
- Parker, J. 1989. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 53: 273–298.
- Perreau, V. M., G. Keith, W. M. Holmes, A. Przykorska, M. A. Santos, and M. F. Tuite 1999. The Candida albicans CUG-decoding ser-tRNA has an atypical anticodon stem-loop structure. J. Mol. Biol. 293: 1039–1053.
- Perry, J., X. Dai, and Y. Zhao 2005. A mutation in the anticodon of a single tRNAala is sufficient to confer auxin resistance in Arabidopsis . Plant Physiol. 139: 1284–1290.
- Pinheiro, M., V. Afreixo, G. Moura, A. Freitas, M. A. Santos, and J. L. Oliveira 2006. Statistical, computational and visualization methodologies to unveil gene primary structure features. Methods Inf. Med. 45: 163–168.
- Pouwels, P. H., and J. A. Leunissen 1994. Divergence in codon usage of Lactobacillus species. Nucleic Acids Res. 22: 929–936.
- Ruan, B., S. Palioura, J. Sabina, L. Marvin-Guy, S. Koch-har, R. A. Larossa, and D. Soll 2008. Quality control despite mistranslation caused by an ambiguous genetic code. Proc. Natl. Acad. Sci. USA 105: 16502–16507.
- Santos, M. A., C. Cheesman, V. Costa, P. Moradas-Ferreira, and M. Tuite 1999. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol. Microbiol. 31: 937–947.
- Santos, M. A., G. Keith, and M. F. Tuite 1993. Nonstandard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5'-CAG-3' (leucine) anticodon. EMBO J. 12: 607–616.
- Santos, M. A., G. Moura, S. E. Massey, and M. F. Tuite 2004. Driving change: the evolution of alternative genetic codes. Trends Genet. 20: 95–102.
- Santos, M. A., V. M. Perreau, and M. F. Tuite 1996. Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans . EMBO J. 15: 5060–5068.
- Santos, M. A., and M. F. Tuite 1995. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans . Nucleic Acids Res. 23: 1481–1486.
- Santos, M. A., T. Ueda, K. Watanabe, and M. F. Tuite 1997. The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation? Mol. Microbiol. 26: 423–431.
- Schultz, D. W., and M. Yarus 1994. Transfer RNA mutation and the malleability of the genetic code. J. Mol. Biol. 235: 1377–1380.
- Schultz, D. W., and M. Yarus 1996. On malleability in the genetic code. J. Mol. Evol. 42: 597–601.
- Sengupta, S., and P. G. Higgs 2005. A unified model of codon reassignment in alternative genetic codes. Genetics 170: 831–840.
- Sharp, P. M., and W. H. Li 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24: 28–38.
- Silva, R. M., J. A. Paredes, G. R. Moura, B. Manadas, T. Lima-Costa, R. Rocha, I. Miranda, A. C. Gomes, M. J. Koerkamp, M. Perrot, F. C. Holstege, H. Boucherie, and M. A. Santos 2007. Critical roles for a genetic code alteration in the evolution of the genus Candida . EMBO J. 26: 4555–4565.
- Soma, A., R. Kumagai, K. Nishikawa, and H. Himeno 1996. The anticodon loop is a major identity determinant of Saccharomyces cerevisiae tRNALeu . J. Mol. Biol. 263: 707–714.
- Sprinzl, M., C. Horn, M. Brown, A. Ioudovitch, and S. Steinberg 1998. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26: 148–153.
- Stansfield, I., K. M. Jones, P. Herbert, A. Lewendon, W. V. Shaw, and M. F. Tuite 1998. Missense translation errors in Saccharomyces cerevisiae . J. Mol. Biol. 282: 13–24.
- Sugita, T., and T. Nakase 1999. Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida . Syst. Appl. Microbiol. 22: 79–86.
- Suzuki, T., T. Ueda, and K. Watanabe 1997. The ‘polysemous’ codon—a codon with multiple amino acid assignment caused by dual specificity of tRNA identity. EMBO J. 16: 1122–1134.
- Tuite, M. F., P. A. Bower, and C. S. McLaughlin 1986. A novel suppressor tRNA from the dimorphic fungus Candida albicans . Biochim. Biophys. Acta 866: 26–31.
- Turanov, A. A., A. V. Lobanov, D. E. Fomenko, H. G. Morrison, M. L. Sogin, L. A. Klobutcher, D. L. Hatfield, and V. N. Gladyshev 2009. Genetic code supports targeted insertion of two amino acids by one codon. Science 323: 259–261.
- Woo, N. H., B. A. Roe, and A. Rich 1980. Three-dimensional structure of Escherichia coli initiator tRNAfMet. Nature 286: 346–351.
- Yokobori, S., T. Suzuki, and K. Watanabe 2001. Genetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity. J. Mol. Evol. 53: 314–326.
- Yokogawa, T., T. Suzuki, T. Ueda, M. Mori, T. Ohama, Y. Kuchino, S. Yoshinari, I. Motoki, K. Nishikawa, S. Osawa, and K. Watanabe 1992. Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: evolutionary implications. Proc. Natl. Acad. Sci. USA 89: 7408–7411.