The role of AI classifiers in skin cancer images
Carolina Magalhaes
INEGI-LAETA, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
Search for more papers by this authorJoaquim Mendes
INEGI-LAETA, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
Search for more papers by this authorCorresponding Author
Ricardo Vardasca
INEGI-LAETA, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
Correspondence
Ricardo Vardasca, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias S/N, 4200-465 Porto, Portugal.
Email: [email protected]
Search for more papers by this authorCarolina Magalhaes
INEGI-LAETA, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
Search for more papers by this authorJoaquim Mendes
INEGI-LAETA, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
Search for more papers by this authorCorresponding Author
Ricardo Vardasca
INEGI-LAETA, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
Correspondence
Ricardo Vardasca, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias S/N, 4200-465 Porto, Portugal.
Email: [email protected]
Search for more papers by this authorAbstract
Background
The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities.
Materials and methods
The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods.
Results
The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision.
Conclusion
Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.
REFERENCES
- 1Reichrath J, Leiter U, Garbe C. Epidemiology of Melanoma and Nonmelanoma Skin Cancer — The Role of Sunlight. In: J Reichrath, ed. Sunlight, Vitamin D and Skin Cancer. New York, NY: Springer; 2014: 89-103.
10.1007/978-1-4939-0437-2 Google Scholar
- 2Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol. 2010; 49(9): 978-986.
- 3Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb). 2017; 7(1): 5-19.
- 4Lubam MC, Bangs SA, Mohler AM, Common D. Benign skin tumors. Am Fam Physician. 2003; 67(4): 729-738 http://www.aafp.org/afp/2003/0215/p729.html.
- 5Massone C, Di Stefani A, Soyer HP. Dermoscopy for skin cancer detection. Curr Opin Oncol. 2005; 17(2): 147-153.
- 6Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001; 23(1): 89-109.
- 7Labatut V, Cherifi H. Accuracy measures for the comparison of classifiers. 5th Int Conf Inf Technol. 2011;(May):11 https://doi.org/10.1.1.658.1777.
- 8Gui C, Chan V. Machine learning in medicine. Univ West Ont Med J. 2017; 86(2): 77-78.
- 9Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Medicine. 2009; 6(7): e1000100.
- 10Moher D, Liberati A, Tetzlaff J, Altman D, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS ONE. 2009; 6(7): 1-6.
- 11Grzesiak-Kopeć K, Ogorzałek M, Nowak L. Computational classification of melanocytic skin lesions. Artif Intell Soft Computing. 2016: 9693; 169–178.
- 12Rahman MM, Bhattacharya P. An integrated and interactive decision support system for automated melanoma recognition of dermoscopic images. Comput Med Imaging Graph. 2010; 34(6): 479–486.
- 13Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection. Comput Med Imaging Graph. 2016; 52: 89–103.
- 14Ruiz D, Berenguer V, Soriano A, Sánchez B. A decision support system for the diagnosis of melanoma: A comparative approach. Expert Syst Appl. 2011; 38(12): 15217–15223.
- 15Narasimhan K, Elamaran V. Wavelet-based energy features for diagnosis of melanoma from dermoscopic images. Int J Biomed Eng Technol. 2016; 20(3): 243.
- 16Barata C, Ruela M, Francisco M, Mendonca T, Marques JS. Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J. 2014; 8(3): 965–979.
- 17Masood A, Al-Jumaily A, Anam K. Self-supervised learning model for skin cancer diagnosis. Int IEEE/EMBS Conf Neural Eng NER. 2015;2015-July:22-24.
10.1109/NER.2015.7146798 Google Scholar
- 18Schaefer G, Krawczyk B, Celebi ME, Iyatomi H, Hassanien AE. Melanoma Classification Based on Ensemble Classification of Dermoscopy Image Features. In: AE Hassanien, MF Tolba, A Taher Azar, eds. Advanced Machine Learning Technologies and Applications. AMLTA 2014. Communications in Computer and Information Science. Cham: Springer; 2014: 291–298. https://doi.org/10.1007/978-3-319-13461-1_28
- 19Castillejos-fernández H, López-ortega O. An intelligent system for the diagnosis of skin cancer on digital images taken with dermoscopy. Acta Polytechnica Hungarica. 2017; 14(3): 169–185.
- 20Faal M, Miran Baygi MH, Kabir E. Improving the diagnostic accuracy of dysplastic and melanoma lesions using the decision template combination method. Ski Res Technol. 2013; 19(1): 113–122.
- 21Rastgoo M, Morel O, Marzani F, Garcia R. Ensemble approach for differentiation of malignant melanoma. Proc SPIE - Int Soc Opt Eng. 2015;9534. https://doi.org/10.1117/12.2182799.
- 22Rastgoo M, Garcia R, Morel O, Marzani F. Automatic differentiation of melanoma from dysplastic nevi. Comput Med Imaging Graph. 2015; 43: 44–52.
- 23Xie F, Fan H, Li Y, Jiang Z, Meng R, Bovik A. Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Trans Med Imaging. 2017; 36(3): 849–858.
- 24Abbas Q, Sadaf M, Akram A. Prediction of dermoscopy patterns for recognition of both melanocytic and non-melanocytic skin lesions. Computers. 2016; 5(3): 13.
- 25Amelard R, Glaister J, Wong A, Clausi DA. High-level intuitive features (HLIFs) for intuitive skin lesion description. IEEE Trans Biomed Eng. 2015; 62(3): 820–831.
- 26Almansour E, Jaffar MA. Classification of dermoscopic skin cancer images using color and hybrid texture features. IJCSNS Int J Comput Sci Netw Secur. 2016; 16(4): 135–139.
- 27Adjed F, Faye I, Ababsa F, Gardezi SJ, Dass SC. Classification of skin cancer images using local binary pattern and SVM classifier. In: 4th International Conference on Fundamental and Applied Sciences (ICFAS 2016). Vol 1787. Kuala Lumpur, Malaysia: AIP Conference Proceedings; 2016. https://doi.org/10.1063/1.4968145
10.1063/1.4968145 Google Scholar
- 28Tan TY, Zhang L, Jiang M. An intelligent decision support system for skin cancer detection from dermoscopic images. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE; 2016:2194–2199. doi:10.1109/FSKD.2016.7603521.
10.1109/FSKD.2016.7603521 Google Scholar
- 29Jaworek-Korjakowska J. Computer-aided diagnosis of micro-malignant melanoma lesions applying support vector machines. Biomed Res Int. 2016; 2016: 1–8.
- 30La Torre E, Caputo B, Tommasi T. Learning methods for melanoma recognition. Int J Imaging Syst Technol. 2010; 20(4): 316–322.
- 31Codella N, Nguyen Q-B, Pankanti S, et al. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev. 2017; 61(4/5): 5:1–5:15.
- 32Celebi ME, Kingravi HA, Uddin B, et al. A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph. 2007; 31(6): 362–373.
- 33Masood A, Al-Jumaily A. SA-SVM based automated diagnostic system for skin cancer. In: Y Wang, X Jiang, D Zhang, eds. In SPIE Sixth International Conference on Graphic and Image Processing (ICGIP 2014). Vol 9443. Sidney, Australia: International Society for Optics and Photonics; 2015. https://doi.org/10.1117/12.2179094
- 34Wahba MA, Ashour AS, Napoleon SA, Abd Elnaby MM, Guo Y. Combined empirical mode decomposition and texture features for skin lesion classification using quadratic support vector machine. Heal Inf Sci Syst. 2017; 5(1): 10.
- 35Yuan X, Yang Z, Zouridakis G, Mullani N. SVM-based Texture Classification and Application to Early Melanoma Detection. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2006:4775-4778. https://doi.org/10.1109/IEMBS.2006.260056
10.1109/IEMBS.2006.260056 Google Scholar
- 36Suganya R. An automated computer aided diagnosis of skin lesions detection and classification for dermoscopy images. In: 2016 International Conference on Recent Trends in Information Technology (ICRTIT). IEEE; 2016:1-5. https://doi.org/10.1109/ICRTIT.2016.7569538
10.1109/ICRTIT.2016.7569538 Google Scholar
- 37Joseph S, Panicker JR. Skin lesion analysis system for melanoma detection with an effective hair segmentation method. In: 2016 International Conference on Information Science (ICIS). IEEE; 2016:91-96. https://doi.org/10.1109/INFOSCI.2016.7845307
10.1109/INFOSCI.2016.7845307 Google Scholar
- 38Messadi M, Bessaid A, Taleb-Ahmed A. New characterization methodology for skin tumors classification. J Mech Med Biol. 2010; 10(03): 467–477.
- 39Aswin RB, Jaleel JA, Salim S. Hybrid genetic algorithm - Artificial neural network classifier for skin cancer detection. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE; 2014:1304–1309. https://doi.org/10.1109/ICCICCT.2014.6993162
10.1109/ICCICCT.2014.6993162 Google Scholar
- 40Cheng B, Joe Stanley R, Stoecker WV, et al. Analysis of clinical and dermoscopic features for basal cell carcinoma neural network classification. Ski Res Technol. 2013; 19(1): 217–222.
- 41Ferris LK, Harkes JA, Gilbert B, et al. Computer-aided classification of melanocytic lesions using dermoscopic images. J Am Acad Dermatol. 2015; 73(5): 769–776.
- 42Kharazmi P, Lui H, Wang ZJ, Lee TK. Automatic detection of basal cell carcinoma using vascular-extracted features from dermoscopy images. In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE; 2016:1-4. https://doi.org/10.1109/CCECE.2016.7726666.
10.1109/CCECE.2016.7726666 Google Scholar
- 43Kharazmi P, AlJasser MI, Lui H, Wang ZJ, Lee TK. Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification. IEEE J Biomed Health Inform. 2017; 21(6): 1675–1684.
- 44Ganster H, Pinz P, Rohrer R, Wildling E, Binder M, Kittler H. Automated melanoma recognition. IEEE Trans Med Imaging. 2001; 20(3): 233–239.
- 45Gerger A, Koller S, Weger W, et al. Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer. 2006; 107(1): 193–200.
- 46Lorber A, Wiltgen M, Hofmann-Wellenhof R, et al. Correlation of image analysis features and visual morphology in melanocytic skin tumours using in vivo confocal laser scanning microscopy. Ski Res Technol. 2009; 15(2): 237–241.
- 47Gerger A, Wiltgen M, Langsenlehner U, et al. Diagnostic image analysis of malignant melanoma in in vivo confocal laser-scanning microscopy: a preliminary study. Ski Res Technol. 2008; 14(3): 359–363.
- 48Koller S, Wiltgen M, Ahlgrimm-Siess V, et al. In vivo reflectance confocal microscopy: automated diagnostic image analysis of melanocytic skin tumours. J Eur Acad Dermatology Venereol. 2011; 25(5): 554–558.
- 49Odeh SM, de Toro F, Rojas I, Saéz-Lara MJ. Evaluating fluorescence illumination techniques for skin lesion diagnosis. Appl Artif Intell. 2012; 26(7): 696–713.
- 50Odeh SM, Baareh A. A comparison of classification methods as diagnostic system: a case study on skin lesions. Comput Methods Programs Biomed. 2016; 137: 311–319.
- 51Li L, Zhang Q, Ding Y, Jiang H, Thiers BH, Wang JZ. Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system. BMC Med Imaging. 2014; 14(1): 1–12.
- 52Liu Z, Sun J, Smith M, Smith L, Warr R. Incorporating clinical metadata with digital image features for automated identification of cutaneous melanoma. Br J Dermatol. 2013; 169(5): 1034–1040.
- 53Tomatis S, Carrara M, Bono A, et al. Automated melanoma detection with a novel multispectral imaging system: Results of a prospective study. Phys Med Biol. 2005; 50(8): 1675–1687.
- 54Tomatis S, Bono A, Bartoli C, et al. Automated melanoma detection: Multispectral imaging and neural network approach for classification. Med Phys. 2003; 30(2): 212–221.
- 55Mohr P, Birgersson U, Berking C, et al. Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Ski Res Technol. 2013; 19(2): 75–83.
- 56Åberg P, Birgersson U, Elsner P, Mohr P, Ollmar S. Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma. Exp Dermatol. 2011; 20(8): 648–652.
- 57Maciel VH, Correr WR, Kurachi C, Bagnato VS, da Silva SC. Fluorescence spectroscopy as a tool to in vivo discrimination of distinctive skin disorders. Photodiagnosis Photodyn Ther. 2017; 19: 45–50.
- 58Jafari MH, Samavi S, Karimi N, Soroushmehr S, Ward K, Najarian K. Automatic detection of melanoma using broad extraction of features from digital images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2016:1357-1360. https://doi.org/10.1109/EMBC.2016.7590959
10.1109/EMBC.2016.7590959 Google Scholar
- 59Eslava J, Druzgalski C. Differential feature space in mean shift clustering for automated melanoma assessment. In: DA Jaffray, ed. IFMBE Proceedings. Vol 51. IFMBE Proceedings. Cham: Springer International Publishing; 2015: 1401-1404. https://doi.org/10.1007/978-3-319-19387-8_341
- 60Takruri M, Rashad MW, Attia H. Multi-classifier decision fusion for enhancing melanoma recognition accuracy. Int Conf Electron Devices, Syst Appl. 2017:0-4.
- 61Oliveira RB, Marranghello N, Pereira AS, Tavares J. A computational approach for detecting pigmented skin lesions in macroscopic images. Expert Syst Appl. 2016; 61: 53–63.
- 62Spyridonos P, Gaitanis G, Likas A, Bassukas ID. Automatic discrimination of actinic keratoses from clinical photographs. Comput Biol Med. 2017; 88: 50–59.
- 63Abbes W, Sellami D, Control A, Departmement EE. High-level features for automatic skin lesions neural network based classification. Int Image Process Appl Syst Conf. 2016;1–7.
10.1109/IPAS.2016.7880148 Google Scholar
- 64Karami N, Esteki A. Automated Diagnosis of Melanoma Based on Nonlinear Complexity Features. In: Osman NAA, Abas WABW, Wahab AKA, Ting H, eds. 5th Kuala Lumpur International Conference on Biomedical Engineering 2011. Berlin, Heidelberg: Springer; 2011:270-274. https://doi.org/10.1007/978-3-642-21729-6_71
10.1007/978-3-642-21729-6_71 Google Scholar
- 65Sanchez I, Agaian S. Computer aided diagnosis of lesions extracted from large skin surfaces. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE; 2012:2879-2884. https://doi.org/10.1109/ICSMC.2012.6378186
10.1109/ICSMC.2012.6378186 Google Scholar
- 66Tabatabaie K, Esteki A. Independent Component Analysis as an Effective Tool for Automated Diagnosis of Melanoma. In: 2008 Cairo International Biomedical Engineering Conference. IEEE; 2008:1-4. https://doi.org/10.1109/CIBEC.2008.4786081
10.1109/CIBEC.2008.4786081 Google Scholar
- 67Jafari MH, Samavi S, Soroushmehr S, Mohaghegh H, Karimi N, Najarian K. Set of descriptors for skin cancer diagnosis using non-dermoscopic color images. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE; 2016:2638-2642. https://doi.org/10.1109/ICIP.2016.7532837
10.1109/ICIP.2016.7532837 Google Scholar
- 68Przystalski K. Decision support system for skin cancer diagnosis. Oper Res. 2010; 406–413.
- 69Cavalcanti PG, Scharcanski J. Automated prescreening of pigmented skin lesions using standard cameras. Comput Med Imaging Graph. 2011; 35(6): 481–491.
- 70Noroozi N, Zakerolhosseini A. Computer assisted diagnosis of basal cell carcinoma using Z-transform features. J Vis Commun Image Represent. 2016; 40: 128–148.
- 71Noroozi N, Zakerolhosseini A. Differential diagnosis of squamous cell carcinoma in situ using skin histopathological images. Comput Biol Med. 2016; 70: 23–39.
- 72Masood A, Al-Jumaily A. Semi-advised learning model for skin cancer diagnosis based on histopathalogical images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2016:631-634. https://doi.org/10.1109/EMBC.2016.7590781
10.1109/EMBC.2016.7590781 Google Scholar
- 73Truong B, Tuan HD, Wallace VP, Fitzgerald AJ, Nguyen HT. The potential of the double debye parameters to discriminate between basal cell carcinoma and normal skin. IEEE Trans Terahertz Sci Technol. 2015; 5(6): 990–998.
- 74Kia S, Setayeshi S, Shamsaei M, Kia M. Computer-aided diagnosis (CAD) of the skin disease based on an intelligent classification of sonogram using neural network. Neural Comput Appl. 2013; 22(6): 1049–1062.
- 75Ding Y, John NW, Smith L, Sun J, Smith M. Combination of 3D skin surface texture features and 2D ABCD features for improved melanoma diagnosis. Med Biol Eng Comput. 2015; 53(10): 961–974.
- 76Teixeira PM. Sobre o significado da significância estatística. Acta Med Port. 2018; 31(5): 238.