Raman characterization of human skin aging
Corresponding Author
Aurélie Villaret
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Correspondence
Aurélie Villaret, Pierre Fabre Dermo-Cosmétique, Hôtel Dieu Saint Jacques, Toulouse Cedex 3, France.
Email: [email protected]
Search for more papers by this authorCélia Ipinazar
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorTuvana Satar
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorEléonore Gravier
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorCéline Mias
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorEmmanuel Questel
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorAnne-Marie Schmitt
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorValérie Samouillan
CIRIMAT UMR 5085, Institut Carnot, Equipe Physique des Polymères, Paul Sabatier University, Toulouse Cedex, France
Search for more papers by this authorFlorence Nadal
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorGwendal Josse
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorCorresponding Author
Aurélie Villaret
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Correspondence
Aurélie Villaret, Pierre Fabre Dermo-Cosmétique, Hôtel Dieu Saint Jacques, Toulouse Cedex 3, France.
Email: [email protected]
Search for more papers by this authorCélia Ipinazar
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorTuvana Satar
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorEléonore Gravier
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorCéline Mias
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorEmmanuel Questel
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorAnne-Marie Schmitt
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorValérie Samouillan
CIRIMAT UMR 5085, Institut Carnot, Equipe Physique des Polymères, Paul Sabatier University, Toulouse Cedex, France
Search for more papers by this authorFlorence Nadal
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorGwendal Josse
Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, Toulouse, France
Search for more papers by this authorAbstract
Background
Skin aging is a complex biological process mixing intrinsic and extrinsic factors, such as sun exposure. At the molecular level, skin aging affects in particular the extracellular matrix proteins.
Materials and Methods
Using Raman imaging, which is a nondestructive approach appropriate for studying biological samples, we analyzed how aging modifies the matrix proteins of the papillary and reticular dermis. Biopsies from the buttock and dorsal forearm of volunteers younger than 30 and older than 60 were analyzed in order to identify chronological and photoaging processes. Analyses were performed on skin section, and Raman spectra were acquired separately on the different dermal layers.
Results
We observed differences in dermal matrix structure and hydration state with skin aging. Chronological aging alters in particular the collagen of the papillary dermis, while photoaging causes a decrease in collagen stability by altering proline and hydroxyproline residues in the reticular dermis. Moreover, chronological aging alters glycosaminoglycan content in both dermal compartments.
Conclusion
Alterations of the papillary and reticular dermal matrix structures during photo- and chronological aging were clearly depicted by Raman spectroscopy.
CONFLICT OF INTEREST
No conflict of interest to declare.
REFERENCES
- 1Rittié L, Fisher GJ. Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med. 2015; 5(1): a015370.
- 2Tang R, Samouillan V, Dandurand J, et al. Identification of ageing biomarkers in human dermis biopsies by thermal analysis (DSC) combined with Fourier transform infrared spectroscopy (FTIR/ATR). Skin Res Technol. 2017; 23: 573-580.
- 3Shuster S, Black MM, McVitie E. The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol. 1975; 93: 639-643.
- 4Varani J, Dame MK, Rittie L, et al. Decreased collagen production in chronologically aged skin. Am J Pathol. 2006; 168: 1861-1868.
- 5Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology. 2015; 61(5): 427-434.
- 6Uitto J. Connective tissue biochemistry of the aging dermis. Age-associated alterations in collagen and elastin. Clin Geriatr Med. 1989; 5: 127-147.
- 7Bernstein EF, et al. Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans. Br J Dermatol. 1996; 135(2): 255-262.
- 8Lee DH, Oh JH, Chung JH. Glycosaminoglycan and proteoglycan in skin aging. J Dermatol Sci. 2016; 83(3): 174-181.
- 9Zhang Q, Andrew Chan KL, Zhang G, et al. Raman microspectroscopic and dynamic vapor sorption characterization of hydration in collagen and dermal tissue. Biopolymers. 2011; 95(9): 607-615.
- 10Nguyen TT, Happillon T, Feru J, et al. Raman comparison of skin dermis of different ages: focus on spectral markers of collagen hydration. J Raman Spectrosc. 2013; 44(9): 1230-1237.
- 11Bella J, Eaton M, Brodsky B, Berman H. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science. 1994; 266(5182): 75-81.
- 12Bella J, Brodsky B, Berman HM. Hydration structure of a collagen peptide. Structure. 1995; 3(9): 893-906.
- 13Gniadecka M, Faurskov Nielsen O, Christensen DH, Wulf HC. Structure of water, proteins, and lipids in intact human skin, hair, and nail. J Invest Dermatol. 1998; 110(4): 393-398.
- 14Gniadecka M, Nielsen OF, Wessel S, Heidenheim M, Christensen DH, Wulf HC. Water and protein structure in photoaged and chronically aged skin. J Invest Dermatol. 1998; 111(6): 1129-1133.
- 15Nakagawa N, Matsumoto M, Sakai S. In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res Technol. 2010; 16(2): 137-141.
- 16Frushour BG, Koenig JL. Raman scattering of collagen, gelatin, and elastin. Biopolymers. 1975; 14(2): 379-391.
- 17Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S. Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. Int J Biol Macromol. 2003; 32(3–5): 199-204.
- 18Nguyen TT, Gobinet C, Feru J, et al. Characterization of Type I and IV collagens by Raman microspectroscopy: identification of spectral markers of the dermo-epidermal junction. Spectroscopy. 2012; 27: 421-427.
- 19de Vasconcelos Nasser Caetano L, de Oliveira Mendes T, Bagatin E, et al. In vivo confocal Raman spectroscopy for intrinsic aging and photoaging assessment. J Dermatol Sci. 2017; 88(2): 199-206.
- 20González FJ, Castillo-Martínez C, Martínez-Escanamé M, et al. Noninvasive estimation of chronological and photoinduced skin damage using Raman spectroscopy and principal component analysis. Skin Res Technol. 2011; 18: 442-446.
- 21Vierkötter A, Ranft U, Krämer U, Sugiri D, Reimann V, Krutmann J. The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing. J Dermatol Sci. 2009; 53(3): 207-211.
- 22Mainreck N, Brézillon S, Sockalingum GD, Maquart FX, Manfait M, Wegrowski Y. Rapid characterization of glycosaminoglycans using a combined approach by infrared and Raman microspectroscopies. J Pharm Sci. 2011; 100(2): 441-450.
- 23Yaowu X, Mingsheng G, Peng Z, et al. Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea. Biophys J. 2008; 94(4): 1359-1366.
- 24Debelle L, Alix AJ, Wei SM, et al. The secondary structure and architecture of human elastin. Eur J Biochem. 1998; 258(2): 533-539.
- 25Gkogkolou P, Böhm M. Advanced glycation end products. Dermatoendocrinol. 2012; 4(3): 259-270.
- 26Guilbert M, Said G, Happillon T, et al. Probing non-enzymatic glycation of type I collagen: a novel approach using Raman and infrared biophotonic methods. Biochem Biophys Acta. 2013; 1830(6): 3525-3531.
- 27Oh JH, Kim YK, Jung JY, et al. Intrinsic aging- and photoaging-dependent level changes of glycosaminoglycans and their correlation with water content in human skin. J Dermatol Sci. 2011; 62(3): 192-201.
- 28Nguyen TT, Eklouh-Molinier C, Sebiskveradze D, et al. Changes of skin collagen orientation associated with chronological aging as probed by polarized-FTIR micro-imaging. Analyst. 2014; 139(10): 2482-2488.
- 29Ly E, Piot O, Durlach A, Bernard P, Manfait M. Polarized Raman microspectroscopy can reveal structural changes of peritumoral dermis in basal cell carcinoma. Appl Spectrosc. 2008; 62(10): 1088-1094.
- 30Short MA, Lui H, McLean D, Zeng H, Alajlan A, Chen XK. Changes in nuclei and peritumoral collagen within nodular basal cell carcinomas via confocal micro-Raman spectroscopy. J Biomed Opt. 2006; 11(3): 34004.
- 31Smith JG Jr, Davidson EA, Sams WM Jr, Clark RD. Alterations in human dermal connective tissue with age and chronic sun damage. J Invest Dermatol. 1962; 39(4): 347-350.
- 32Janssens M, van Smeden J, Puppels GJ, Lavrijsen AP, Caspers PJ, Bouwstra JA. Lipid to protein ratio plays an important role in the skin barrier function of atopic eczema patients. Br J Dermatol. 2014; 170: 1248-1255.
- 33Piredda P, Berning M, Boukamp P, Volkmer A. subcellular Raman microspectroscopy imaging of nucleic acids and tryptophan for distinction of normal human skin cells and tumorigenic keratinocytes. Anal Chem. 2015; 87: 6778-6785.