A landscape of hairy and twisted: hunting for new trichome mutants in the Saskatoon Arabidopsis T-DNA population
Corresponding Author
A. Taheri
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
College of Agriculture, Human and Natural Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209-1561
Correspondence
A. Taheri & M. Gruber, Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
E-mails: [email protected] (AT); [email protected] (MG)
Search for more papers by this authorP. Gao
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
Plant Biotechnology Institute, National Research Council, Saskatoon, SK, Canada
Search for more papers by this authorM. Yu
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
Search for more papers by this authorD. Cui
Agricultural and Environmental Research Services, ICMS Inc, Fort Saskatchewan, AB, Canada
Search for more papers by this authorS. Regan
Department of Biology, Queen's University, Kingston, ON, Canada
Search for more papers by this authorI. Parkin
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
Search for more papers by this authorCorresponding Author
M. Gruber
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
Correspondence
A. Taheri & M. Gruber, Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
E-mails: [email protected] (AT); [email protected] (MG)
Search for more papers by this authorCorresponding Author
A. Taheri
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
College of Agriculture, Human and Natural Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209-1561
Correspondence
A. Taheri & M. Gruber, Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
E-mails: [email protected] (AT); [email protected] (MG)
Search for more papers by this authorP. Gao
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
Plant Biotechnology Institute, National Research Council, Saskatoon, SK, Canada
Search for more papers by this authorM. Yu
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
Search for more papers by this authorD. Cui
Agricultural and Environmental Research Services, ICMS Inc, Fort Saskatchewan, AB, Canada
Search for more papers by this authorS. Regan
Department of Biology, Queen's University, Kingston, ON, Canada
Search for more papers by this authorI. Parkin
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
Search for more papers by this authorCorresponding Author
M. Gruber
Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
Correspondence
A. Taheri & M. Gruber, Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
E-mails: [email protected] (AT); [email protected] (MG)
Search for more papers by this authorAbstract
A total of 88 new Arabidopsis lines with trichome variation were recovered by screening 49,200 single-seed descent T3 lines from the SK activation-tagged population and from a new 20,000-line T-DNA insertion population (called pAG). Trichome variant lines were classified into 12 distinct phenotype categories. Single or multiple T-DNA insertion sites were identified for 89% of these mutant lines. Alleles of the well-known trichome genes TRY, GL2 and TTG1 were recovered with atypical phenotype variation not reported previously. Moreover, atypical gene expression profiles were documented for two additional mutants specifying TRY and GL2 disruptions. In remaining mutants, ten lines were disrupted in genes coding for proteins not implicated in trichome development, five were disrupted in hypothetical proteins and 11 were disrupted in proteins with unknown function. The collection represents new opportunities for the plant biology community to define trichome development more precisely and to refine the function of individual trichome genes.
Supporting Information
Filename | Description |
---|---|
plb12230-sup-0001-TableS1.docWord document, 95 KB | Table S1. Primers used for qPCR analysis on select Saskatoon Arabidopsis lines. |
plb12230-sup-0002-TableS2.docWord document, 199.5 KB | Table S2. Phenotype classification and Gene Loci for 88 Saskatoon Arabidopsis mutants with trichome variation. |
plb12230-sup-0003-TableS3.xlsxMS Excel, 41.2 KB | Table S3. List of 204 unique trichome gene loci retrieved from the TAIR database and used to screen FST data known for a sub-set of the SK population to find additional trichome phenotypes. |
plb12230-sup-0004-TableS4.xlsxMS Excel, 36.3 KB | Table S4. List and description of genes 100 kb upstream or downstream of T-DNA inserts in Saskatoon mutant lines P120 and P137. |
plb12230-sup-0005-FigS1.docWord document, 2.5 MB | Figure S1. Complete set of Saskatoon Arabidopsis trichome mutants classified according to trichome phenotype categories. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Abrahams S., Tanner G.J., Larkin P.J., Ashton A.R. (2002) Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiology, 130, 561–576.
- Alahakoon U. (2013) Effect of TRANSPARENT TESTA GLABRA1 on trichome development, growth, and insect resistance in a B. napus AtGLABRA3 background. Ph.D. thesis, Department of Biology. Saskatoon, SK: University of Saskatchewan, Canada.
- Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H., Shinn P., Stevenson D.K., Zimmerman J., Barajas P., Cheuk R., Gadrinab C., Heller C., Jeske A., Koesema E., Meyers C.C., Parker H., Prednis L., Ansari Y., Choy N., Deen H., Geralt M., Hazari N., Hom E., Karnes M., Mulholland C., Ndubaku R., Schmidt I., Guzman P., Aguilar-Henonin L., Schmid M., Weigel D., Carter D.E., Marchand T., Risseeuw E., Brogden D., Zeko A., Crosby W.L., Berry C.C., Ecker J.R. (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301, 653–657.
- Arvidsson S., Kwasniewski M., Riano-Pachon D., Mueller-Roeber B. (2008) QuantPrime – a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics, 9, 465.
- Balkunde R., Pesch M., Hülskamp M. (2010) Trichome Patterning in Arabidopsis thaliana: from Genetic to Molecular Models. In: C.P.T. Marja (Ed.), Current topics in devevelopmental biology. Academic Press, New York, USA, pp 299–321.
- Basu D., El-Assal Sel D., Le J., Mallery E.L., Szymanski D.B. (2004) Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development, 131, 4345–4355.
- Bent A. (2006) Arabidopsis thaliana floral dip transformation method. Methods in Molecular Biology, 343, 87–103.
- Bernhardt C., Lee M.M., Gonzalez A., Zhang F., Lloyd A., Schiefelbein J. (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development, 130, 6431–6439.
- Churchman M.L., Brown M.L., Kato N., Kirik V., Hulskamp M., Inze D., De Veylder L., Walker J.D., Zheng Z., Oppenheimer D.G., Gwin T., Churchman J., Larkin J.C. (2006) SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. The Plant Cell, 18, 3145–3157.
- Clough S.J., Bent A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.
- Daxinger L., Hunter B., Sheikh M., Jauvion V., Gasciolli V., Vaucheret H., Matzke M., Furner I. (2008) Unexpected silencing effects from T-DNA tags in Arabidopsis. Trends in Plant Science, 13, 4–6.
- El-Assal Sel D., Le J., Basu D., Mallery E.L., Szymanski D.B. (2004) Arabidopsis GNARLED encodes a NAP125 homolog that positively regulates ARP2/3. Current Biology, 14, 1405–1409.
- El-Din El-Assal S., Le J., Basu D., Mallery E.L., Szymanski D.B. (2004) DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. The Plant Journal, 38, 526–538.
- Folkers U., Kirik V., Schobinger U., Falk S., Krishnakumar S., Pollock M.A., Oppenheimer D.G., Day I., Reddy A.S., Jurgens G., Hulskamp M. (2002) The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO Journal, 21, 1280–1288.
- Gao Y., Gong X., Cao W., Zhao J., Fu L., Wang X., Schumaker K.S., Guo Y. (2008) SAD2 in Arabidopsis functions in trichome initiation through mediating GL3 function and regulating GL1, TTG1 and GL2 expression. Journal of Integrated Plant Biology, 50, 906–917.
- Gonzalez A., Mendenhall J., Huo Y., Lloyd A. (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Developmental Biology, 325, 412–421.
- Greene E.A., Codomo C.A., Taylor N.E., Henikoff J.G., Till B.J., Reynolds S.H., Enns L.C., Burtner C., Johnson J.E., Odden A.R., Comai L., Henikoff S. (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics, 164, 731–740.
- Hansen S.F., Harholt J., Oikawa A., Scheller H.V. (2012) Plant glycosyltransferases beyond CAZy: a perspective on DUF families. Frontiers in Plant Science, 59, 1–10.
- Hayashi S., Ishii T., Matsunaga T., Tominaga R., Kuromori T., Wada T., Shinozaki K., Hirayama T. (2008) The glycerophosphoryl diester phosphodiesterase-like proteins SHV3 and its homologs play important roles in cell wall organization. Plant and Cell Physiology, 49, 1522–1535.
- Hornitschek P., Kohnen M.V., Lorrain S., Rougemont J., Ljung K., López-Vidriero I., Franco-Zorrilla J.M., Solano R., Trevisan M., Pradervand S., Xenarios I., Fankhauser C. (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. The Plant Journal, 71, 699–711.
- Ilgenfritz H., Bouyer D., Schnittger A., Mathur J., Kirik V., Schwab B., Chua N.H., Jurgens G., Hulskamp M. (2003) The Arabidopsis STICHEL gene is a regulator of trichome branch number and encodes a novel protein. Plant Physiology, 131, 643–655.
- Imai K.K., Ohashi Y., Tsuge T., Yoshizumi T., Matsui M., Oka A., Aoyama T. (2006) The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. The Plant Cell, 18, 382–396.
- Ishida T., Kurata T., Okada K., Wada T. (2008) A genetic regulatory network in the development of trichomes and root hairs. Annual Review of Plant Biology, 59, 365–386.
- Johnson C.S., Kolevski B., Smyth D.R. (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell, 14, 1359–1375.
- Karimi M., Inzé D., Depicker A. (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7, 193–195.
- Keegstra K., Raikhel N. (2001) Plant glycosyltransferases. Current Opinion in Plant Biology, 4, 219–224.
- Kirik V., Bouyer D., Schobinger U., Bechtold N., Herzog M., Bonneville J.M., Hulskamp M. (2001) CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Current Biology, 11, 1891–1895.
- Kirik V., Lee M.M., Wester K., Herrmann U., Zheng Z., Oppenheimer D., Schiefelbein J., Hulskamp M. (2005) Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation. Development, 132, 1477–1485.
- Kleindt C.K., Stracke R., Mehrtens F., Weisshaar B. (2010) Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway. BMC Research Notes, 3, 255.
- Kurata T., Kawabata-Awai C., Sakuradani E., Shimizu S., Okada K., Wada T. (2003) The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. The Plant Journal, 36, 55–66.
- Kurup S., Jones H.D., Holdsworth M.J. (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. The Plant Journal, 21, 143–155.
- Li Y., Rosso M.G., Ülker B., Weisshaar B. (2006) Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions. Genomics, 87, 645–652.
- Marks M.D., Wenger J.P., Gilding E., Jilk R., Dixon R.A. (2009) Transcriptome analysis of Arabidopsis wild-type and gl3–sst sim trichomes identifies four additional genes required for trichome development. Molecular Plant, 2, 803–822.
- Mathur J., Mathur N., Kernebeck B., Hulskamp M. (2003a) Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. The Plant Cell, 15, 1632–1645.
- Mathur J., Mathur N., Kirik V., Kernebeck B., Srinivas B.P., Hulskamp M. (2003b) Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development, 130, 3137–3146.
- Morohashi K., Zhao M., Yang M., Read B., Lloyd A., Lamb R., Grotewold E. (2007) Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiology, 145, 736–746.
- Ohashi Y., Oka A., Ruberti I., Morelli G., Aoyama T. (2002) Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation. The Plant Journal, 29, 359–369.
- Ojangu E.L., Järve K., Paves H., Truve E. (2007) Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma, 230, 193–202.
- Oppenheimer D.G., Pollock M.A., Vacik J., Szymanski D.B., Ericson B., Feldmann K., Marks M.D. (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proceedings of the National Academy of Sciences USA, 94, 6261–6266.
- Parcy F., Valon C., Raynal M., Gaubier-Comella P., Delseny M., Giraudat J. (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. The Plant Cell, 6, 1567–1582.
- Pesch M., Hülskamp M. (2009) One, two, three…models for trichome patterning in Arabidopsis? Current Opinion in Plant Biology, 12, 587–592.
- Pesch M., Hülskamp M. (2011) Role of TRIPTYCHON in trichome patterning in Arabidopsis. BMC Plant Biology, 11, 130.
- Qiu J.L., Jilk R., Marks M.D., Szymanski D.B. (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. The Plant Cell, 14, 101–118.
- Robinson S., Tang L., Mooney B., McKay S., Clarke W., Links M., Karcz S., Regan S., Wu Y.-Y., Gruber M., Cui D., Yu M., Parkin I. (2009) An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biology, 9, 101.
- Serna L., Martin C. (2006) Trichomes: different regulatory networks lead to convergent structures. Trends in Plant Science, 11, 274–280.
- Sinlapadech T., Stout J., Ruegger M.O., Deak M., Chapple C. (2007) The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid: UDPG glucosyltransferase. The Plant Journal, 49, 655–668.
- Spector D., Etienne F., Brot N., Weissbach H. (2003) New membrane-associated and soluble peptide methionine sulfoxide reductases in Escherichia coli. Biochemistry and Biophysics Research Communication, 302, 284–289.
- Sugimoto-Shirasu K., Stacey N.J., Corsar J., Roberts K., McCann M.C. (2002) DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Current Biology, 12, 1782–1786.
- Sundaresan V., Springer P., Volpe T., Haward S., Jones J.D., Dean C., Ma H., Martienssen R. (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes & Development, 9, 1797–1810.
- Taheri A., Robinson S.J., Parkin I., Gruber M.Y. (2012) Revised selection criteria for candidate restriction enzymes in genome walking. PLoS ONE, 7, e35117.
- Vanzin G.F., Madson M., Carpita N.C., Raikhel N.V., Keegstra K., Reiter W.D. (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences USA, 99, 3340–3345.
- Walling L.L. (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiology, 146, 859–866.
- Wei S., Gruber M.Y., Yu B., Gao M.-J., Khachatourians G.G., Hegedus D.D., Parkin I.A.P., Hannoufa A. (2012) Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network. BMC Plant Biology, 12, 169.
- Weigel D., Ahn J.H., Blazquez M.A., Borevitz J.O., Christensen S.K., Fankhauser C., Ferrandiz C., Kardailsky I., Malancharuvil E.J., Neff M.M., Nguyen J.T., Sato S., Wang Z.-Y., Xia Y., Dixon R.A., Harrison M.J., Lamb C.J., Yanofsky M.F., Chory J. (2000) Activation tagging in Arabidopsis. Plant Physiology, 122, 1003–1014.
- Winter D., Vinegar B., Nahal H., Ammar R., Wilson G.V., Provart N.J. (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE, 2, e718.
- Yi X., Du Z., Su Z. (2013) PlantGSEA: a gene set enrichment analysis toolkit for plant community. Nucleic Acids Research, 41, W98–W103.
- Zhang F., Gonzalez A., Zhao M., Payne C.T., Lloyd A. (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development, 130, 4859–4869.
- Zhong R., Burk D.H., Nairn C.J., Wood-Jones A., Morrison W.H. 3rd, Ye Z.H. (2005) Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. The Plant Cell, 17, 1449–1466.