ISPAD Clinical Practice Consensus Guidelines 2022: Other complications and associated conditions in children and adolescents with type 1 diabetes
Elke Fröhlich-Reiterer
Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
Search for more papers by this authorNancy S. Elbarbary
Department of Pediatrics, Ain Shams University, Cairo, Egypt
Search for more papers by this authorKimber Simmons
Barbara Davis Center for Diabetes, University of Colorado, Denver, Colorado, USA
Search for more papers by this authorBruce Buckingham
Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University Medical Center, Stanford, California, USA
Search for more papers by this authorKhadija N. Humayun
Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
Search for more papers by this authorJesper Johannsen
Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Herlev and Steno Diabetes Center Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for more papers by this authorReinhard W. Holl
Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
Search for more papers by this authorShana Betz
Parent/Advocate for people with diabetes, Markham, Canada
Search for more papers by this authorCorresponding Author
Farid H. Mahmud
Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
Correspondence
Farid H. Mahmud, Hospital for Sick Children, University of Toronto, Toronto, Ontari, Canada.
Email: [email protected]
Search for more papers by this authorElke Fröhlich-Reiterer
Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
Search for more papers by this authorNancy S. Elbarbary
Department of Pediatrics, Ain Shams University, Cairo, Egypt
Search for more papers by this authorKimber Simmons
Barbara Davis Center for Diabetes, University of Colorado, Denver, Colorado, USA
Search for more papers by this authorBruce Buckingham
Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University Medical Center, Stanford, California, USA
Search for more papers by this authorKhadija N. Humayun
Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
Search for more papers by this authorJesper Johannsen
Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Herlev and Steno Diabetes Center Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for more papers by this authorReinhard W. Holl
Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
Search for more papers by this authorShana Betz
Parent/Advocate for people with diabetes, Markham, Canada
Search for more papers by this authorCorresponding Author
Farid H. Mahmud
Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
Correspondence
Farid H. Mahmud, Hospital for Sick Children, University of Toronto, Toronto, Ontari, Canada.
Email: [email protected]
Search for more papers by this author
CONFLICT OF INTEREST
The authors have declared no relevant conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The relevant studies that support the recommendations are available in the references.
REFERENCES
- 1Lamb MM, Yin X, Zerbe GO, et al. Height growth velocity, islet autoimmunity and type 1 diabetes development: the diabetes autoimmunity study in the young. Diabetologia. 2009; 52(10): 2064-2071.
- 2Vehik K, Hamman RF, Lezotte D, Norris JM, Klingensmith GJ, Dabelea D. Childhood growth and age at diagnosis with type 1 diabetes in Colorado young people. Diabet Med. 2009; 26(10): 961-967.
- 3Islam ST, Abraham A, Donaghue KC, et al. Plateau of adiposity in Australian children diagnosed with type 1 diabetes: a 20-year study. Diabet Med. 2014; 31(6): 686-690.
- 4Beyerlein A, Thiering E, Pflueger M, et al. Early infant growth is associated with the risk of islet autoimmunity in genetically susceptible children. Pediatr Diabetes. 2014; 15(7): 534-542.
- 5Liu X, Vehik K, Huang Y, et al. Distinct growth phases in early life associated with the risk of type 1 diabetes: the TEDDY study. Diabetes Care. 2020; 43(3): 556-562.
- 6Couper JJ, Beresford S, Hirte C, et al. Weight gain in early life predicts risk of islet autoimmunity in children with a first-degree relative with type 1 diabetes. Diabetes Care. 2009; 32(1): 94-99.
- 7Ferrara CT, Geyer SM, Liu YF, et al. Excess BMI in childhood: a modifiable risk factor for type 1 diabetes development? Diabetes Care. 2017; 40(5): 698-701.
- 8Antvorskov JC, Aunsholt L, Buschard K, et al. Childhood body mass index in relation to subsequent risk of type 1 diabetes-a Danish cohort study. Pediatr Diabetes. 2018; 19(2): 265-270.
- 9Ferrara-Cook C, Geyer SM, Evans-Molina C, et al. Excess BMI accelerates islet autoimmunity in older children and adolescents. Diabetes Care. 2020; 43(3): 580-587.
- 10Wasyl-Nawrot B, Wójcik M, Nazim J, Skupień J, Starzyk JB. Increased incidence of type 1 diabetes in children and no change in the age of diagnosis and BMI-SDS at the onset–is the accelerator hypothesis not working? J Clin Res Pediatr Endocrinol. 2020; 12(3): 281-286.
- 11Bonfig W, Kapellen T, Dost A, et al. Growth in children and adolescents with type 1 diabetes. J Pediatr. 2012; 160(6): 900-903.e902.
- 12Giannini C, Mohn A, Chiarelli F. Growth abnormalities in children with type 1 diabetes, juvenile chronic arthritis, and asthma. Int J Endocrinol. 2014; 2014:265954.
- 13Shapiro MR, Wasserfall CH, McGrail SM, et al. Insulin-like growth factor dysregulation both preceding and following type 1 diabetes diagnosis. Diabetes. 2020; 69(3): 413-423.
- 14Shpitzer H, Lazar L, Shalitin S, Phillip M, Vries LDJJD. Good glycemic control at puberty in boys with type 1 diabetes is important for final height. J Diabetes. 2021; 13(12): 998-1006.
- 15Marcovecchio ML, Heywood JJ, Dalton RN, Dunger DB. The contribution of glycemic control to impaired growth during puberty in young people with type 1 diabetes and microalbuminuria. Pediatr Diabetes. 2014; 15(4): 303-308.
- 16Svensson J, Schwandt A, Pacaud D, et al. The influence of treatment, age at onset, and metabolic control on height in children and adolescents with type 1 diabetes-a SWEET collaborative study. Pediatr Diabetes. 2018; 19(8): 1441-1450.
- 17Bizzarri C, Timpanaro TA, Matteoli MC, Patera IP, Cappa M, Cianfarani S. Growth trajectory in children with type 1 diabetes mellitus: the impact of insulin treatment and metabolic control. Horm Res Paediatr. 2018; 89(3): 172-177.
- 18Fitzpatrick E, Cotoi C, Quaglia A, Sakellariou S, Ford-Adams ME, Hadzic N. Hepatopathy of Mauriac syndrome: a retrospective review from a tertiary liver Centre. Arch Dis Child. 2014; 99(4): 354-357.
- 19Lombardo F, Passanisi S, Gasbarro A, Tuccari G, Ieni A, Salzano G. Hepatomegaly and type 1 diabetes: a clinical case of Mauriac's syndrome. Ital J Pediatr. 2019; 45(1): 3.
- 20MacDonald MJ, Hasan NM, Ansari IU, Longacre MJ, Kendrick MA, Stoker SW. Discovery of a genetic metabolic cause for Mauriac syndrome in type 1 diabetes. Diabetes. 2016; 65(7): 2051-2059.
- 21Fröhlich-Reiterer EE, Rosenbauer J, Bechtold-Dalla Pozza S, et al. Predictors of increasing BMI during the course of diabetes in children and adolescents with type 1 diabetes: data from the German/Austrian DPV multicentre survey. Arch Dis Child. 2014; 99: 738-743.
- 22 DCCT Research Group (Diabetes Control and Complications Trial Research Group). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14): 977-986.
- 23Redondo MJ, Foster NC, Libman IM, et al. Prevalence of cardiovascular risk factors in youth with type 1 diabetes and elevated body mass index. Acta Diabetol. 2016; 53(2): 271-277.
- 24Cho YH, Craig ME, Jopling T, Chan A, Donaghue KC. Higher body mass index predicts cardiac autonomic dysfunction: a longitudinal study in adolescent type 1 diabetes. Pediatr Diabetes. 2018; 19(4): 794-800.
- 25DuBose SN, Hermann JM, Tamborlane WV, et al. Obesity in youth with type 1 diabetes in Germany, Austria, and the United States. J Pediatr. 2015; 167(3): 627-632.e4.
- 26De Keukelaere M, Fieuws S, Reynaert N, et al. Evolution of body mass index in children with type 1 diabetes mellitus. Eur J Pediatr. 2018; 177(11): 1661-1666.
- 27Phelan H, Foster NC, Schwandt A, et al. Longitudinal trajectories of BMI z-score: an international comparison of 11,513 Australian, American and German/Austrian/Luxembourgian youth with type 1 diabetes. Pediatr Obes. 2020; 15(2):e12582.
- 28Schwandt A, Kuss O, Dunstheimer D, et al. Three-variate longitudinal patterns of metabolic control, body mass index, and insulin dose during puberty in a type 1 diabetes cohort: a group-based multitrajectory analysis. J Pediatr. 2020; 218: 64-71.e63.
- 29Libman IM, Miller KM, DiMeglio LA, et al. Effect of metformin added to insulin on glycemic control among overweight/obese adolescents with type 1 diabetes: a randomized clinical trial. JAMA. 2015; 314(21): 2241-2250.
- 30Markowitz JT, Lowe MR, Volkening LK, Laffel LM. Self-reported history of overweight and its relationship to disordered eating in adolescent girls with type 1 diabetes. Diabet Med. 2009; 26(11): 1165-1171.
- 31Marlow AL, Rowe CW, Anderson D, et al. Young children, adolescent girls and women with type 1 diabetes are more overweight and obese than reference populations, and this is associated with increased cardiovascular risk factors. Diabet Med. 2019; 36(11): 1487-1493.
- 32Reinehr T, Dieris B, Galler A, et al. Worse metabolic control and dynamics of weight status in adolescent girls point to eating disorders in the first years after manifestation of type 1 diabetes mellitus: findings from the diabetes patienten verlaufsdokumentation registry. J Pediatr. 2019; 207: 205-212.e205.
- 33Codner E, Cassorla F. Puberty and ovarian function in girls with type 1 diabetes mellitus. Horm Res. 2009; 71(1): 12-21.
- 34Cho YH, Craig ME, Srinivasan S, et al. Heart rate variability in pubertal girls with type 1 diabetes: its relationship with glycaemic control, insulin resistance and hyperandrogenism. Clin Endocrinol (Oxf). 2014; 80(6): 818-824.
- 35Codner E, Iñíguez G, López P, et al. Metformin for the treatment of hyperandrogenism in adolescents with type 1 diabetes mellitus. Horm Res Paediatr. 2013; 80(5): 343-349.
- 36Nathan N, Sullivan SD. The utility of metformin therapy in reproductive-aged women with polycystic ovary syndrome (PCOS). Curr Pharm Biotechnol. 2014; 15(1): 70-83.
- 37Schweiger BM, Snell-Bergeon JK, Roman R, McFann K, Klingensmith GJ. Menarche delay and menstrual irregularities persist in adolescents with type 1 diabetes. Reprod Biol Endocrinol. 2011; 9: 61.
- 38Picardi A, Cipponeri E, Bizzarri C, Fallucca S, Guglielmi C, Pozzilli P. Menarche in type 1 diabetes is still delayed despite good metabolic control. Fertil Steril. 2008; 90(5): 1875-1877.
- 39Codner E, Cerda T, Gaete X. Puberty in type 1 diabetes mellitus: advances in care are associated with changes in pubertal milestones and hormone profiles. Curr Opin Endocr Metab Res. 2020; 14: 85-91.
10.1016/j.coemr.2020.06.002 Google Scholar
- 40Yi Y, El Khoudary SR, Buchanich JM, et al. Women with type 1 diabetes (T1D) experience a shorter reproductive period compared with nondiabetic women: the Pittsburgh epidemiology of diabetes complications (EDC) study and the study of women's health across the nation (SWAN). Menopause (New York, NY). 2021; 28(6): 634-641.
- 41Hughes JW, Riddlesworth TD, DiMeglio LA, et al. Autoimmune diseases in children and adults with type 1 diabetes from the T1D exchange clinic registry. J Clin Endocrinol Metab. 2016; 101(12): 4931-4937.
- 42Warncke K, Fröhlich-Reiterer EE, Thon A, Hofer SE, Wiemann D, Holl RW. Polyendocrinopathy in children, adolescents, and young adults with type 1 diabetes: a multicenter analysis of 28,671 patients from the German/Austrian DPV-Wiss database. Diabetes Care. 2010; 33(9): 2010-2012.
- 43Jonsdottir B, Andersson C, Carlsson A, et al. Thyroid autoimmunity in relation to islet autoantibodies and HLA-DQ genotype in newly diagnosed type 1 diabetes in children and adolescents. Diabetologia. 2013; 56(8): 1735-1742.
- 44Zhernakova A, Withoff S, Wijmenga C. Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nat Rev Endocrinol. 2013; 9(11): 646-659.
- 45Tettey P, Simpson S Jr, Taylor BV, van der Mei IA. The co-occurrence of multiple sclerosis and type 1 diabetes: shared aetiologic features and clinical implication for MS aetiology. J Neurol Sci. 2015; 348(1–2): 126-131.
- 46Bechtold S, Blaschek A, Raile K, et al. Higher relative risk for multiple sclerosis in a pediatric and adolescent diabetic population: analysis from DPV database. Diabetes Care. 2014; 37(1): 96-101.
- 47Glastras SJ, Craig ME, Verge CF, Chan AK, Cusumano JM, Donaghue KC. The role of autoimmunity at diagnosis of type 1 diabetes in the development of thyroid and celiac disease and microvascular complications. Diabetes Care. 2005; 28(9): 2170-2175.
- 48Shun CB, Donaghue KC, Phelan H, Twigg SM, Craig ME. Thyroid autoimmunity in type 1 diabetes: systematic review and meta-analysis. Diabet Med. 2014; 31(2): 126-135.
- 49Triolo TM, Armstrong TK, McFann K, et al. Additional autoimmune disease found in 33% of patients at type 1 diabetes onset. Diabetes Care. 2011; 34(5): 1211-1213.
- 50Kordonouri O, Hartmann R, Deiss D, Wilms M, Gruters-Kieslich A. Natural course of autoimmune thyroiditis in type 1 diabetes: association with gender, age, diabetes duration, and puberty. Arch Dis Child. 2005; 90(4): 411-414.
- 51Jonsdottir B, Larsson C, Carlsson A, et al. Thyroid and islet autoantibodies predict autoimmune thyroid disease at type 1 diabetes diagnosis. J Clin Endocrinol Metab. 2017; 102(4): 1277-1285.
- 52Mohn A, Di Michele S, Di Luzio R, Tumini S, Chiarelli F. The effect of subclinical hypothyroidism on metabolic control in children and adolescents with type 1 diabetes mellitus. Diabet Med. 2002; 19(1): 70-73.
- 53Joseph J, Saroha V, Payne H, et al. Thyroid function at diagnosis of type I diabetes. Arch Dis Child. 2011; 96(8): 777-779.
- 54Tahirovic H, Ducic V, Smajic A. Euthyroid sick syndrome in type I diabetes mellitus in children and adolescents. Acta Paediatr Hung. 1991; 31(1): 67-73.
- 55Brenta G, Fretes O. Dyslipidemias and hypothyroidism. Pediatr Endocrinol Rev. 2014; 11(4): 390-399.
- 56McLeod DS, Cooper DS, Ladenson PW, Whiteman DC, Jordan SJ. Race/ethnicity and the prevalence of thyrotoxicosis in young Americans. Thyroid. 2015; 25(6): 621-628.
- 57Dost A, Rohrer TR, Frohlich-Reiterer E, et al. Hyperthyroidism in 276 children and adolescents with type 1 diabetes from Germany and Austria. Horm Res Paediatr. 2015; 84(3): 190-198.
- 58Chan W, Wong GW, Fan DS, Cheng AC, Lam DS, Ng JS. Ophthalmopathy in childhood Graves' disease. Br J Ophthalmol. 2002; 86(7): 740-742.
- 59Rivkees SA, Mattison DR. Ending propylthiouracil-induced liver failure in children. N Engl J Med. 2009; 360(15): 1574-1575.
- 60Ross DS, Burch HB, Cooper DS, et al. 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016; 26(10): 1343-1421.
- 61Craig ME, Prinz N, Boyle CT, et al. Prevalence of celiac disease in 52,721 youth with type 1 diabetes: international comparison across three continents. Diabetes Care. 2017; 40(8): 1034-1040.
- 62Pham-Short ADK, Ambler G, Chan AK, Craig ME. Coeliac disease in type 1 diabetes from 1990 to 2009: higher incidence in young children after longer diabetes duration. Diabet Med. 2012; 29(9): e286-e289.
- 63Pham-Short A, Donaghue KC, Ambler G, Phelan H, Twigg S, Craig ME. Screening for celiac disease in type 1 diabetes: a systematic review. Pediatrics. 2015; 136(1): e170-e176.
- 64Taczanowska A, Schwandt A, Amed S, et al. Celiac disease in children with type 1 diabetes varies around the world: an international, cross-sectional study of 57 375 patients from the SWEET registry. J Diabetes. 2021; 13(6): 448-457.
- 65Al-Hussaini A, Sulaiman N, Al-Zahrani M, Alenizi A, El Haj I. High prevalence of celiac disease among Saudi children with type 1 diabetes: a prospective cross-sectional study. BMC Gastroenterol. 2012; 12: 180.
- 66Srivastava A, Chaturvedi S, Dabadghao P, et al. Prevalence of celiac disease in Indian children with type 1 diabetes. Indian J Gastroenterol. 2016; 35(5): 372-378.
- 67Cerutti F, Chiarelli F, Lorini R, Meschi F, Sacchetti C. Younger age at onset and sex predict celiac disease in children and adolescents with type 1 diabetes. Diabetes Care. 2004; 27(6): 1294-1298.
- 68Fröhlich-Reiterer EE, Kaspers S, Hofer S, et al. Anthropometry, metabolic control, and follow-up in children and adolescents with type 1 diabetes mellitus and biopsy-proven celiac disease. J Pediatr. 2011; 158(4): 589-593. e582.
- 69Vajravelu ME, Keren R, Weber DR, Verma R, De León DD, Denburg MR. Incidence and risk of celiac disease after type 1 diabetes: a population-based cohort study using the health improvement network database. Pediatr Diabetes. 2018; 19(8): 1422-1428.
- 70Goodwin G. Type 1 diabetes mellitus and celiac disease: distinct autoimmune disorders that share common pathogenic mechanisms. Horm Res Paediatr. 2019; 92(5): 285-292.
- 71Bakker SF, Tushuizen ME, Stokvis-Brantsma WH, et al. Frequent delay of coeliac disease diagnosis in symptomatic patients with type 1 diabetes mellitus: clinical and genetic characteristics. Eur J Intern Med. 2013; 24(5): 456-460.
- 72Kurppa K, Laitinen A, Agardh D. Coeliac disease in children with type 1 diabetes. Lancet Child Adolesc Health. 2018; 2(2): 133-143.
- 73Mohn A, Cerruto M, Iafusco D, et al. Celiac disease in children and adolescents with type I diabetes: importance of hypoglycemia. J Pediatr Gastroenterol Nutr. 2001; 32(1): 37-40.
- 74Sun S, Puttha R, Ghezaiel S, Skae M, Cooper C, Amin R. The effect of biopsy-positive silent coeliac disease and treatment with a gluten-free diet on growth and glycaemic control in children with type 1 diabetes. Diabet Med. 2009; 26(12): 1250-1254.
- 75Sud S, Marcon M, Assor E, Palmert MR, Daneman D, Mahmud FH. Celiac disease and pediatric type 1 diabetes: diagnostic and treatment dilemmas. Int J Pediatr Endocrinol. 2010; 2010:161285.
- 76Salardi S, Volta U, Zucchini S, et al. Prevalence of celiac disease in children with type 1 diabetes mellitus increased in the mid-1990 s: an 18-year longitudinal study based on anti-endomysial antibodies. J Pediatr Gastroenterol Nutr. 2008; 46(5): 612-614.
- 77Puñales M, Bastos MD, Ramos ARL, et al. Prevalence of celiac disease in a large cohort of young patients with type 1 diabetes. Pediatr Diabetes. 2019; 20(4): 414-420.
- 78Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA, Gastroenterology AC. ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol. 2013; 108(5): 656-676. quiz 677.
- 79Gould MJ, Mahmud FH, Clarke ABM, et al. Accuracy of screening tests for celiac disease in asymptomatic patients with type 1 diabetes. Am J Gastroenterol. 2021; 116(7): 1545-1549.
- 80Husby S, Koletzko S, Korponay-Szabó I, et al. European society pediatric gastroenterology, hepatology and nutrition guidelines for diagnosing coeliac disease 2020. J Pediatr Gastroenterol Nutr. 2020; 70(1): 141-156.
- 81Binder E, Loinger M, Muhlbacher A, et al. Genotyping of coeliac-specific human leucocyte antigen in children with type 1 diabetes: does this screening method make sense? Arch Dis Child. 2017; 102(7): 603-606.
- 82Elias J, Hoorweg-Nijman JJ, Balemans WA. Clinical relevance and cost-effectiveness of HLA genotyping in children with type 1 diabetes mellitus in screening for coeliac disease in The Netherlands. Diabet Med. 2015; 32(6): 834-838.
- 83Mitchell RT, Sun A, Mayo A, Forgan M, Comrie A, Gillett PM. Coeliac screening in a Scottish cohort of children with type 1 diabetes mellitus: is DQ typing the way forward? Arch Dis Child. 2016; 101(3): 230-233.
- 84Joshi KK, Haynes A, Davis EA, D'Orsogna L, McLean-Tooke A. Role of HLA-DQ typing and anti-tissue transglutaminase antibody titers in diagnosing celiac disease without duodenal biopsy in type 1 diabetes: a study of the population-based pediatric type 1 diabetes cohort of Western Australia. Pediatr Diabetes. 2019; 20(5): 567-573.
- 85Kurien M, Leeds JS, Hopper AD, et al. Serological testing for coeliac disease in type 1 diabetes mellitus: is immunoglobulin a level measurement necessary? Diabet Med. 2013; 30(7): 840-845.
- 86Cataldo F, Marino V, Bottaro G, Greco P, Ventura A. Celiac disease and selective immunoglobulin a deficiency. J Pediatr. 1997; 131(2): 306-308.
- 87 American Diabetes Association Professional Practice C, Draznin B, Aroda VR, et al. Children and adolescents: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45(1): S208-S231.
- 88Marsh MN, Crowe PT. Morphology of the mucosal lesion in gluten sensitivity. Baillieres Clin Gastroenterol. 1995; 9(2): 273-293.
- 89Weir DC, Glickman JN, Roiff T, Valim C, Leichtner AM. Variability of histopathological changes in childhood celiac disease. Am J Gastroenterol. 2010; 105(1): 207-212.
- 90Pais WP, Duerksen DR, Pettigrew NM, Bernstein CN. How many duodenal biopsy specimens are required to make a diagnosis of celiac disease? Gastrointest Endosc. 2008; 67(7): 1082-1087.
- 91Elitsur Y, Sigman T, Watkins R, et al. Tissue transglutaminase levels are not sufficient to diagnose celiac disease in north American practices without intestinal biopsies. Dig Dis Sci. 2017; 62(1): 175-179.
- 92Egner W, Shrimpton A, Sargur R, Patel D, Swallow K. ESPGHAN guidance on coeliac disease 2012: multiples of ULN for decision-making do not harmonise assay performance across centres. J Pediatr Gastroenterol Nutr. 2012; 55(6): 733-735.
- 93Castellaneta S, Piccinno E, Oliva M, et al. High rate of spontaneous normalization of celiac serology in a cohort of 446 children with type 1 diabetes: a prospective study. Diabetes Care. 2015; 38(5): 760-766.
- 94Unal E, Demiral M, Baysal B, et al. Frequency of celiac disease and spontaneous normalization rate of celiac serology in children and adolescent patients with type 1 diabetes. J Clin Res Pediatr Endocrinol. 2021; 13(1): 72-79.
- 95Parkkola A, Harkonen T, Ryhanen SJ, Uibo R, Ilonen J, Knip M. Transglutaminase antibodies and celiac disease in children with type 1 diabetes and in their family members. Pediatr Diabetes. 2018; 19(2): 305-313.
- 96Warncke K, Liptay S, Frohlich-Reiterer E, et al. Vascular risk factors in children, adolescents, and young adults with type 1 diabetes complicated by celiac disease: results from the DPV initiative. Pediatr Diabetes. 2016; 17(3): 191-198.
- 97Tittel SR, Dunstheimer D, Hilgard D, et al. Coeliac disease is associated with depression in children and young adults with type 1 diabetes: results from a multicentre diabetes registry. Acta Diabetol. 2021; 58(5): 623-631.
- 98Tokatly Latzer I, Rachmiel M, Zuckerman Levin N, et al. Increased prevalence of disordered eating in the dual diagnosis of type 1 diabetes mellitus and celiac disease. Pediatr Diabetes. 2018; 19(4): 749-755.
- 99Salardi S, Maltoni G, Zucchini S, et al. Celiac disease negatively influences lipid profiles in young children with type 1 diabetes: effect of the gluten-free diet. Diabetes Care. 2016; 39(8): e119-e120.
- 100Nagl K, Bollow E, Liptay S, et al. Lower HbA1c in patients with type 1 diabetes and celiac disease who reached celiac-specific antibody-negativity-a multicenter DPV analysis. Pediatr Diabetes. 2019; 20(8): 1100-1109.
- 101Amin R, Murphy N, Edge J, Ahmed ML, Acerini CL, Dunger DB. A longitudinal study of the effects of a gluten-free diet on glycemic control and weight gain in subjects with type 1 diabetes and celiac disease. Diabetes Care. 2002; 25(7): 1117-1122.
- 102Pham-Short A, Donaghue KC, Ambler G, Garnett S, Craig ME. Greater postprandial glucose excursions and inadequate nutrient intake in youth with type 1 diabetes and celiac disease. Sci Rep. 2017; 7:45286.
- 103Mahmud FH, Clarke ABM, Joachim KC, et al. Screening and treatment outcomes in adults and children with type 1 diabetes and asymptomatic celiac disease: the CD-DIET study. Diabetes Care. 2020; 43(7): 1553-1556.
- 104Margoni D, Chouliaras G, Duscas G, et al. Bone health in children with celiac disease assessed by dual X-ray absorptiometry: effect of gluten-free diet and predictive value of serum biochemical indices. J Pediatr Gastroenterol Nutr. 2012; 54(5): 680-684.
- 105Saukkonen T, Vaisanen S, Akerblom HK, Savilahti E, Childhood Diabetes in Finland Study G. Coeliac disease in children and adolescents with type 1 diabetes: a study of growth, glycaemic control, and experiences of families. Acta Paediatr. 2002; 91(3): 297-302.
- 106Mollazadegan K, Kugelberg M, Montgomery SM, Sanders DS, Ludvigsson J, Ludvigsson JF. A population-based study of the risk of diabetic retinopathy in patients with type 1 diabetes and celiac disease. Diabetes Care. 2013; 36(2): 316-321.
- 107Pham-Short A, C Donaghue K, Ambler G, et al. Early elevation of albumin excretion rate is associated with poor gluten-free diet adherence in young people with coeliac disease and diabetes. Diabet Med 2014; 31(2): 208–212.
- 108Rohrer TR, Wolf J, Liptay S, et al. Microvascular complications in childhood-onset type 1 diabetes and celiac disease: a multicenter longitudinal analysis of 56,514 patients from the German-Austrian DPV database. Diabetes Care. 2015; 38(5): 801-807.
- 109Mollazadegan K, Sanders DS, Ludvigsson J, Ludvigsson JF. Long-term coeliac disease influences risk of death in patients with type 1 diabetes. J Intern Med. 2013; 274(3): 273-280.
- 110Leeds JS, Hopper AD, Hadjivassiliou M, Tesfaye S, Sanders DS. High prevalence of microvascular complications in adults with type 1 diabetes and newly diagnosed celiac disease. Diabetes Care. 2011; 34(10): 2158-2163.
- 111Assor E, Marcon MA, Hamilton N, Fry M, Cooper T, Mahmud FH. Design of a dietary intervention to assess the impact of a gluten-free diet in a population with type 1 diabetes and celiac disease. BMC Gastroenterol. 2015; 15: 181.
- 112Connan V, Marcon MA, Mahmud FH, et al. Online education for gluten-free diet teaching: development and usability testing of an e-learning module for children with concurrent celiac disease and type 1 diabetes. Pediatr Diabetes. 2019; 20(3): 293-303.
- 113Pham-Short A, Donaghue KC, Ambler G, Garnett S, Craig ME. Quality of life in type 1 diabetes and celiac disease: role of the gluten-free diet. J Pediatr. 2016; 179: 131-138.e131.
- 114Weiman DI, Mahmud FH, Clarke ABM, et al. Impact of a gluten-free diet on quality of life and health perception in patients with type 1 diabetes and asymptomatic celiac disease. J Clin Endocrinol Metabol. 2021; 106(5): e1984-e1992.
- 115Peterson P, Salmi H, Hyöty H, et al. Steroid 21-hydroxylase autoantibodies in insulin-dependent diabetes mellitus. Clin Immunol Immunopathol. 1997; 82(1): 37-42.
- 116De Block CE, De Leeuw IH, Vertommen JJ, et al. Beta-cell, thyroid, gastric, adrenal and coeliac autoimmunity and HLA-DQ types in type 1 diabetes. Clin Exp Immunol. 2001; 126(2): 236-241.
- 117Baker P, Fain P, Kahles H, et al. Genetic determinants of 21-hydroxylase autoantibodies amongst patients of the type 1 diabetes genetics consortium. J Clin Endocrinol Metab. 2012; 97(8): E1573-E1578.
- 118Triolo TM, Baschal EE, Armstrong TK, et al. Homozygosity of the polymorphism MICA5.1 identifies extreme risk of progression to overt adrenal insufficiency among 21-hydroxylase antibody-positive patients with type 1 diabetes. J Clin Endocrinol Metab. 2009; 94(11): 4517-4523.
- 119Cutolo M. Autoimmune polyendocrine syndromes. Autoimmun Rev. 2014; 13(2): 85-89.
- 120Michels AW, Gottlieb PA. Autoimmune polyglandular syndromes. Nat Rev Endocrinol. 2010; 6(5): 270-277.
- 121Oda JM, Hirata BK, Guembarovski RL, Watanabe MA. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. J Genet. 2013; 92(1): 163-171.
- 122Tresoldi AS, Sumilo D, Perrins M, et al. Increased infection risk in Addison's disease and congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2020; 105(2): 418-429.
- 123Chantzichristos D, Persson A, Eliasson B, et al. Mortality in patients with diabetes mellitus and Addison's disease: a nationwide, matched, observational cohort study. Eur J Endocrinol. 2017; 176(1): 31-39.
- 124Chantzichristos D, Eliasson B, Johannsson G. Management of endocrine disease. Disease burden and treatment challenges in patients with both Addison's disease and type 1 diabetes mellitus. Eur J Endocrinol. 2020; 183(1): R1-R11.
- 125Karlsson FA, Burman P, Loof L, Mardh S. Major parietal cell antigen in autoimmune gastritis with pernicious anemia is the acid-producing H+, K+-adenosine triphosphatase of the stomach. J Clin Investig. 1988; 81(2): 475-479.
- 126Segni M, Borrelli O, Pucarelli I, Delle Fave G, Pasquino AM, Annibale B. Early manifestations of gastric autoimmunity in patients with juvenile autoimmune thyroid diseases. J Clin Endocrinol Metab. 2004; 89(10): 4944-4948.
- 127Marignani M, Delle Fave G, Mecarocci S, et al. High prevalence of atrophic body gastritis in patients with unexplained microcytic and macrocytic anemia: a prospective screening study. Am J Gastroenterol. 1999; 94(3): 766-772.
- 128Pan XF, Gu JQ, Shan ZY. Type 1 diabetic populations have an increased prevalence of parietal cell antibody: a systematic review and meta-analysis. Medicine. 2015; 94(38):e1440.
- 129Karavanaki K, Kakleas K, Paschali E, et al. Screening for associated autoimmunity in children and adolescents with type 1 diabetes mellitus (T1DM). Horm Res. 2009; 71(4): 201-206.
- 130Kokkonen J. Parietal cell antibodies and gastric secretion in children with diabetes mellitus. Acta Paediatr Scand. 1980; 69(4): 485-489.
- 131Fröhlich-Reiterer EE, Huber J, Katz H, et al. Do children and adolescents with type 1 diabetes mellitus have a higher frequency of parietal cell antibodies than healthy controls? J Pediatr Gastroenterol Nutr. 2011; 52(5): 558-562.
- 132Hermann G, Thon A, Monkemoller K, et al. Comorbidity of type 1 diabetes and juvenile idiopathic arthritis. J Pediatr. 2015; 166(4): 930-935.e3.
- 133Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett. 2011; 585(23): 3689-3698.
- 134Prakash EB, Jayanth JJ, Fernando ME. Diabetes mellitus and renal tubular acidosis in primary Sjogren's syndrome. J Assoc Physicians India. 2010; 58: 451-453.
- 135Aaltonen J, Björses P, Sandkuijl L, Perheentupa J, Peltonen L. An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21. Nat Genet. 1994; 8(1): 83-87.
- 136Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med. 1990; 322(26): 1829-1836.
- 137Capalbo D, Improda N, Esposito A, et al. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy from the pediatric perspective. J Endocrinol Invest. 2013; 36(10): 903-912.
- 138Gylling M, Tuomi T, Bjorses P, et al. Ss-cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 2000; 85(12): 4434-4440.
- 139Kakleas K, Soldatou A, Karachaliou F, Karavanaki K. Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM). Autoimmun Rev. 2015; 14(9): 781-797.
- 140Decmann A, Toke J, Csoregh E, Gaspardy G, Somogyi A. Type 3 autoimmune polyglandular syndrome with multiple genetic alterations in a young male patient with type 1 diabetes mellitus. Endokrynol Pol. 2021; 72(3): 286-287.
- 141Gentile S, Strollo F, Ceriello A. Lipodistrophy and associated risk factors in insulin-treated people with diabetes. Int J Endocrinol Metab. 2016; 14(2):e33997.
- 142Thewjitcharoen Y, Prasartkaew H, Tongsumrit P, et al. Prevalence, risk factors, and clinical characteristics of lipodystrophy in insulin-treated patients with diabetes: an old problem in a new era of modern insulin. Diabetes Metab Syndr Obes. 2020; 13: 4609-4620.
- 143Heinemann L. Insulin absorption from lipodystrophic areas: a (neglected) source of trouble for insulin therapy? J Diabetes Sci Technol. 2010; 4(3): 750-753.
- 144Singha A, Bhattacharjee R, Dalal BS, Biswas D, Choudhuri S, Chowdhury S. Associations of insulin-induced lipodystrophy in children, adolescents, and young adults with type 1 diabetes mellitus using recombinant human insulin: a cross-sectional study. J Pediatr Endocrinol Metab. 2021; 34(4): 503-508.
- 145Gentile S, Strollo F, Ceriello A, Group A-OITS. Lipodystrophy in insulin-treated subjects and other injection-site skin reactions: are we sure everything is clear? Diabetes Ther. 2016; 7(3): 401-409.
- 146Lima AL, Illing T, Schliemann S, Elsner P. Cutaneous manifestations of diabetes mellitus: a review. Am J Clin Dermatol. 2017; 18(4): 541-553.
- 147Blanco M, Hernandez MT, Strauss KW, Amaya M. Prevalence and risk factors of lipohypertrophy in insulin-injecting patients with diabetes. Diabetes Metab. 2013; 39(5): 445-453.
- 148Famulla S, Hovelmann U, Fischer A, et al. Insulin injection into lipohypertrophic tissue: blunted and more variable insulin absorption and action and impaired postprandial glucose control. Diabetes Care. 2016; 39(9): 1486-1492.
- 149Frid A, Hirsch L, Gaspar R, et al. New injection recommendations for patients with diabetes. Diabetes Metab. 2010; 36: S3-S18.
- 150Hirsch L, Byron K, Gibney M. Intramuscular risk at insulin injection sites–measurement of the distance from skin to muscle and rationale for shorter-length needles for subcutaneous insulin therapy. Diabetes Technol Ther. 2014; 16(12): 867-873.
- 151Bergenstal RM, Strock ES, Peremislov D, Gibney MA, Parvu V, Hirsch LJ. Safety and efficacy of insulin therapy delivered via a 4mm pen needle in obese patients with diabetes. Mayo Clin Proc. 2015; 90(3): 329-338.
- 152Bertuzzi F, Meneghini E, Bruschi E, Luzi L, Nichelatti M, Epis O. Ultrasound characterization of insulin induced lipohypertrophy in type 1 diabetes mellitus. J Endocrinol Invest. 2017; 40(10): 1107-1113.
- 153Hambridge K. The management of lipohypertrophy in diabetes care. Br J Nurs (Mark Allen Publishing). 2007; 16(9): 520-524.
- 154Lopez X, Castells M, Ricker A, Velazquez EF, Mun E, Goldfine AB. Human insulin analog--induced lipoatrophy. Diabetes Care. 2008; 31(3): 442-444.
- 155Phua EJ, Lopez X, Ramus J, Goldfine AB. Cromolyn sodium for insulin-induced lipoatrophy: old drug, new use. Diabetes Care. 2013; 36(12): e204-e205.
- 156Holstein A, Stege H, Kovacs P. Lipoatrophy associated with the use of insulin analogues: a new case associated with the use of insulin glargine and review of the literature. Expert Opin Drug Saf. 2010; 9(2): 225-231.
- 157Richardson T, Kerr D. Skin-related complications of insulin therapy: epidemiology and emerging management strategies. Am J Clin Dermatol. 2003; 4(10): 661-667.
- 158Radermecker RP, Pierard GE, Scheen AJ. Lipodystrophy reactions to insulin: effects of continuous insulin infusion and new insulin analogs. Am J Clin Dermatol. 2007; 8(1): 21-28.
- 159Babiker A, Datta V. Lipoatrophy with insulin analogues in type I diabetes. Arch Dis Child. 2011; 96(1): 101-102.
- 160Chantelau EA, Praetor R, Praetor J, Poll LW. Relapsing insulin-induced lipoatrophy, cured by prolonged low-dose oral prednisone: a case report. Diabetol Metab Syndr. 2011; 3(1): 33.
- 161Ramos AJ, Farias MA. Human insulin-induced lipoatrophy: a successful treatment with glucocorticoid. Diabetes Care. 2006; 29(4): 926-927.
- 162Kumar O, Miller L, Mehtalia S. Use of dexamethasone in treatment of insulin lipoatrophy. Diabetes. 1977; 26(4): 296-299.
- 163Whitley TH, Lawrence PA, Smith CL. Amelioration of insulin lipoatrophy by dexamethasone injection. JAMA. 1976; 235(8): 839-840.
- 164Association AD. Diabetes technology: standards of medical care in diabetes 2021. Diabetes Care. 2021; 44: 85-99.
- 165Rachmiel M, Landau Z, Boaz M, et al. The use of continuous glucose monitoring systems in a pediatric population with type 1 diabetes mellitus in real-life settings: the AWeSoMe study group experience. Acta Diabetol. 2015; 52(2): 323-329.
- 166Hoeks LB, Greven WL, de Valk HW. Real-time continuous glucose monitoring system for treatment of diabetes: a systematic review. Diabet Med. 2011; 28(4): 386-394.
- 167Mauras N, Beck R, Xing D, et al. A randomized clinical trial to assess the efficacy and safety of real-time continuous glucose monitoring in the management of type 1 diabetes in young children aged 4 to <10 years. Diabetes Care. 2012; 35(2): 204-210.
- 168Asarani NAM, Reynolds AN, Boucher SE, de Bock M, Wheeler BJ. Cutaneous complications with continuous or flash glucose monitoring use: systematic review of trials and observational studies. J Diabetes Sci Technol. 2020; 14(2): 328-337.
- 169Burgmann J, Biester T, Grothaus J, Kordonouri O, Ott H. Pediatric diabetes and skin disease (PeDiSkin): a cross-sectional study in 369 children, adolescents and young adults with type 1 diabetes. Pediatr Diabetes. 2020; 21(8): 1556-1565.
- 170Berg AK, Olsen BS, Thyssen JP, et al. High frequencies of dermatological complications in children using insulin pumps or sensors. Pediatr Diabetes. 2018; 19(4): 733-740.
- 171Heinemann L, Kamann S. Adhesives used for diabetes medical devices: a neglected risk with serious consequences? J Diabetes Sci Technol. 2016; 10(6): 1211-1215.
- 172Schwensen JF, Friis UF, Zachariae C, Johansen JD. Sensitization to cyanoacrylates caused by prolonged exposure to a glucose sensor set in a diabetic child. Contact Dermatitis. 2016; 74(2): 124-125.
- 173Hyry HSI, Liippo JP, Virtanen HM. Allergic contact dermatitis caused by glucose sensors in type 1 diabetes patients. Contact Dermatitis. 2019; 81(3): 161-166.
- 174Mowitz M, Herman A, Baeck M, et al. N, N-dimethylacrylamide-a new sensitizer in the FreeStyle libre glucose sensor. Contact Dermatitis. 2019; 81(1): 27-31.
- 175Herman A, de Montjoye L, Marot L, Baeck M. Induction of leukoderma following allergic contact dermatitis to FreeStyle libre. Contact Dermatitis. 2019; 81(6): 456-458.
- 176Bolinder J, Antuna R, Geelhoed-Duijvestijn P, Kroger J, Weitgasser R. Cutaneous adverse events related to FreeStyle libre device - Authors' reply. Lancet. 2017; 389(10077): 1396-1397.
- 177Herman A, Uter W, Rustemeyer T, et al. Position statement: the need for EU legislation to require disclosure and labelling of the composition of medical devices. J Eur Acad Dermatol Venereol. 2021; 35(7): 1444-1448.
- 178Conwell LS, Pope E, Artiles AM, Mohanta A, Daneman A, Daneman D. Dermatological complications of continuous subcutaneous insulin infusion in children and adolescents. J Pediatr. 2008; 152(5): 622-628.
- 179DeSalvo DJ, Maahs DM, Messer L, et al. Effect of lipohypertrophy on accuracy of continuous glucose monitoring in patients with type 1 diabetes. Diabetes Care. 2015; 38(10): e166-e167.
- 180McNichol L, Lund C, Rosen T, Gray M. Medical adhesives and patient safety: state of the science: consensus statements for the assessment, prevention, and treatment of adhesive-related skin injuries. J Wound Ostomy Continence Nurs. 2013; 40(4): 365-380. quiz E361-362.
- 181Paret M, Barash G, Rachmiel M. "Out of the box" solution for skin problems due to glucose-monitoring technology in youth with type 1 diabetes: real-life experience with fluticasone spray. Acta Diabetol. 2020; 57(4): 419-424.
- 182Messer LH, Berget C, Beatson C, Polsky S, Forlenza GP. Preserving skin integrity with chronic device use in diabetes. Diabetes Technol Ther. 2018; 20(S2): S254-S264.
- 183Sawalha N, Geddie H. Insulin edema associated with newly diagnosed type 1 diabetes and high glycated hemoglobin: a case and review of the pediatric literature. Can J Diabetes. 2021; 45(6): 571-574.
- 184Chelliah A, Burge MR. Insulin edema in the twenty-first century: review of the existing literature. J Invest Med. 2004; 52(2): 104-108.
- 185Mamoulakis D, Bitsori M, Galanakis E, Raissaki M, Kalmanti M. Insulin-induced oedema in children and adolescents. J Paediatr Child Health. 2006; 42(10): 655-657.
- 186Evans DJ, Pritchard-Jones K, Trotman-Dickenson B. Insulin oedema. Postgrad Med J. 1986; 62(729): 665-668.
- 187Ehrlich S, Querfeld U, Pfeiffer E. Refeeding oedema: an important complication in the treatment of anorexia nervosa. Eur Child Adolesc Psychiatry. 2006; 15(4): 241-243.
- 188Bas VN, Cetinkaya S, Agladioglu SY, et al. Insulin oedema in newly diagnosed type 1 diabetes mellitus. J Clin Res Pediatr Endocrinol. 2010; 2(1): 46-48.
- 189Lee P, Kinsella J, Borkman M, Carter J. Bilateral pleural effusions, ascites, and facial and peripheral oedema in a 19-year-old woman 2 weeks following commencement of insulin lispro and detemir–an unusual presentation of insulin oedema. Diabet Med. 2007; 24(11): 1282-1285.
- 190Hopkins DF, Cotton SJ, Williams G. Effective treatment of insulin-induced edema using ephedrine. Diabetes Care. 1993; 16(7): 1026-1028.
- 191Wong M, Balakrishnan T. Anasarca in newly diagnosed type 1 diabetes: review of the pathophysiology of insulin edema. Cureus. 2020; 12(3):e7234.
- 192Rothacker KM, Kaye J. Insulin oedema and treatment-induced neuropathy occurring in a 20-year-old patient with type 1 diabetes commenced on an insulin pump. Diabet Med. 2014; 31(1): e6-e10.
- 193Sibbald C, Reid S, Alavi A. Necrobiosis lipoidica. Dermatol Clin. 2015; 33(3): 343-360.
- 194Uva L, Freitas J, Soares de Almeida L, et al. Squamous cell carcinoma arising in ulcerated necrobiosis lipoidica diabeticorum. Int Wound J. 2015; 12(6): 741-743.
- 195Ahmed I, Goldstein B. Diabetes mellitus. Clin Dermatol. 2006; 24(4): 237-246.
- 196Erfurt-Berge C, Seitz AT, Rehse C, Wollina U, Schwede K, Renner R. Update on clinical and laboratory features in necrobiosis lipoidica: a retrospective multicentre study of 52 patients. Eur J Dermatol. 2012; 22(6): 770-775.
- 197Bello YM, Phillips TJ. Necrobiosis lipoidica. Indolent plaques may signal diabetes. Postgrad Med. 2001; 109(3): 93-94.
- 198O'Toole EA, Kennedy U, Nolan JJ, Young MM, Rogers S, Barnes L. Necrobiosis lipoidica: only a minority of patients have diabetes mellitus. Br J Dermatol. 1999; 140(2): 283-286.
- 199De Silva BD, Schofield OM, Walker JD. The prevalence of necrobiosis lipoidica diabeticorum in children with type 1 diabetes. Br J Dermatol. 1999; 141(3): 593-594.
- 200Hammami H, Youssef S, Jaber K, Dhaoui MR, Doss N. Perforating necrobiosis lipoidica in a girl with type 1 diabetes mellitus: a new case reported. Dermatol Online J. 2008; 14(7): 11.
- 201Alkhatieb M, Mortada H. Truncal necrobiosis lipoidica diabeticorum: A first case report. Int J Surg Case Rep. 2020; 77: 311-313.
- 202Cohen O, Yaniv R, Karasik A, Trau H. Necrobiosis lipoidica and diabetic control revisited. Med Hypotheses. 1996; 46(4): 348-350.
- 203Bonura C, Frontino G, Rigamonti A, et al. Necrobiosis lipoidica diabeticorum: A pediatric case report. Dermato-Endocrinol. 2014; 6(1):e27790.
- 204Hammer E, Lilienthal E, Hofer SE, Schulz S, Bollow E, Holl RW. Risk factors for necrobiosis lipoidica in type 1 diabetes mellitus. Diabet Med. 2017; 34(1): 86-92.
- 205Blevins M. Atypical ulcerative necrobiosis lipoidica diabeticorum: a case study. Int J Low Extrem Wounds. 2021;20:1534734621999269.
- 206Basoulis D, Fragiadaki K, Tentolouris N, Sfikakis PP, Kokkinos A. Anti-TNFalpha treatment for recalcitrant ulcerative necrobiosis lipoidica diabeticorum: a case report and review of the literature. Metabolism. 2016; 65(4): 569-573.
- 207Barbet-Massin MA, Rigalleau V, Blanco P, et al. Remission of necrobiosis lipoidica diabeticorum with a JAK1/2 inhibitor: a case report. Diabetes Metab. 2021; 47(4):101143.
- 208Van Hattem S, Bootsma AH, Thio HB. Skin manifestations of diabetes. Cleve Clin J Med. 2008; 75(11): 772-774.
- 209Ezzedine K, Sheth V, Rodrigues M, et al. Vitiligo is not a cosmetic disease. J Am Acad Dermatol. 2015; 73(5): 883-885.
- 210Saleh HM, Abdel Fattah NS, Hamza HT. Evaluation of serum 25-hydroxyvitamin D levels in vitiligo patients with and without autoimmune diseases. Photodermatol Photoimmunol Photomed. 2013; 29(1): 34-40.
- 211Taieb A, Alomar A, Bohm M, et al. Guidelines for the management of vitiligo: the European dermatology forum consensus. Br J Dermatol. 2013; 168(1): 5-19.
- 212Duff M, Demidova O, Blackburn S, Shubrook J. Cutaneous manifestations of diabetes mellitus. Clin Diabetes: A Publication of the American Diabetes Association. 2015; 33(1): 40-48.
- 213Gerrits EG, Landman GW, Nijenhuis-Rosien L, Bilo HJ. Limited joint mobility syndrome in diabetes mellitus: a minireview. World J Diabetes. 2015; 6(9): 1108-1112.
- 214Silverstein JH, Gordon G, Pollock BH, Rosenbloom AL. Long-term glycemic control influences the onset of limited joint mobility in type 1 diabetes. J Pediatr. 1998; 132(6): 944-947.
- 215Arkkila PE, Kantola IM, Viikari JS. Limited joint mobility in type 1 diabetic patients: correlation to other diabetic complications. J Intern Med. 1994; 236(2): 215-223.
- 216Fitzgibbons PG, Weiss AP. Hand manifestations of diabetes mellitus. J Hand Surg Am. 2008; 33(5): 771-775.
- 217Francia P, Sorelli M, Piccini B, et al. Glycemic control maintained over time and joint stiffness in young type 1 patients: what is the mathematical relationship? J Diabetes Sci Technol. 2019; 13(4): 728-733.
- 218Labad J, Rozadilla A, Garcia-Sancho P, Nolla JM, Montanya E. Limited joint mobility progression in type 1 diabetes: a 15-year follow-up study. Int J Endocrinol. 2018; 2018:1897058.
- 219Frost D, Beischer W. Limited joint mobility in type 1 diabetic patients: associations with microangiopathy and subclinical macroangiopathy are different in men and women. Diabetes Care. 2001; 24(1): 95-99.
- 220Abate M, Schiavone C, Pelotti P, Salini V. Limited joint mobility in diabetes and ageing: recent advances in pathogenesis and therapy. Int J Immunopathol Pharmacol. 2010; 23(4): 997-1003.
- 221Lindsay JR, Kennedy L, Atkinson AB, et al. Reduced prevalence of limited joint mobility in type 1 diabetes in a U.K. clinic population over a 20-year period. Diabetes Care. 2005; 28(3): 658-661.
- 222Weber DR, Haynes K, Leonard MB, Willi SM, Denburg MR. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using the health improvement network (THIN). Diabetes Care. 2015; 38(10): 1913-1920.
- 223Chen SC, Shepherd S, McMillan M, et al. Skeletal fragility and its clinical determinants in children with type 1 diabetes. J Clin Endocrinol Metab. 2019; 104(8): 3585-3594.
- 224Shah VN, Harrall KK, Shah CS, et al. Bone mineral density at femoral neck and lumbar spine in adults with type 1 diabetes: a meta-analysis and review of the literature. Osteoporos Int. 2017; 28(9): 2601-2610.
- 225Shah VN, Carpenter RD, Ferguson VL, Schwartz AV. Bone health in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2018; 25(4): 231-236.
- 226Starup-Linde J, Hygum K, Harsløf T, Langdahl B. Type 1 diabetes and bone fragility: links and risks. Diabetes Metab Syndr Obes. 2019; 12: 2539-2547.
- 227Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes. 2019; 10(8): 421-445.
- 228Eckert AJ, Semler O, Schnabel D, et al. Bone fractures in children and young adults with type 1 diabetes: age distribution, fracture location, and the role of glycemic control. J Bone Miner Res. 2021; 36(12): 2371-2380.
- 229Fuusager GB, Christesen HT, Milandt N, Schou AJ. Glycemic control and bone mineral density in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2019; 20(5): 629-636.
- 230Joseph TV, Caksa S, Misra M, Mitchell DM. Hip structural analysis reveals impaired hip geometry in girls with type 1 diabetes. J Clin Endocrinol Metab. 2020; 105(12): e4848-e4856.
- 231Kaur H, Joshee P, Franquemont S, et al. Bone mineral content and bone density is lower in adolescents with type 1 diabetes: a brief report from the RESISTANT and EMERALD studies. J Diabetes Complications. 2018; 32(10): 931-933.
- 232Madsen JOB, Herskin CW, Zerahn B, et al. Unaffected bone mineral density in Danish children and adolescents with type 1 diabetes. J Bone Miner Metab. 2020; 38(3): 328-337.
- 233Maratova K, Soucek O, Matyskova J, et al. Muscle functions and bone strength are impaired in adolescents with type 1 diabetes. Bone. 2018; 106: 22-27.
- 234Jaworski M, Wierzbicka E, Pludowski P, Szalecki M. Forearm bone density, cross-sectional size and muscle cross-sectional area in adolescents with diabetes mellitus type 1 assessed by peripheral quantitative computed tomography. J Musculoskelet Neuronal Interact. 2019; 19(4): 435-447.
- 235Mitchell DM, Caksa S, Joseph T, Bouxsein ML, Misra M. Elevated HbA1c is associated with altered cortical and trabecular microarchitecture in girls with type 1 diabetes. J Clin Endocrinol Metab. 2020; 105(4): e1648-e1656.
- 236Almutlaq N, Neyman A, DiMeglio LA. Are diabetes microvascular complications risk factors for fragility fracture? Curr Opin Endocrinol Diabetes Obes. 2021; 28(4): 354-359.
- 237Slavcheva-Prodanova O, Konstantinova M, Tsakova A, Savova R, Archinkova M. Bone health index and bone turnover in pediatric patients with type 1 diabetes mellitus and poor metabolic control. Pediatr Diabetes. 2020; 21(1): 88-97.
- 238Franceschi R, Longhi S, Cauvin V, et al. Bone geometry, quality, and bone markers in children with type 1 diabetes mellitus. Calcif Tissue Int. 2018; 102(6): 657-665.
- 239Weber DR, Gordon RJ, Kelley JC, et al. Poor glycemic control is associated with impaired bone accrual in the year following a diagnosis of type 1 diabetes. J Clin Endocrinol Metab. 2019; 104(10): 4511-4520.
- 240Wierzbicka E, Swiercz A, Pludowski P, Jaworski M, Szalecki M. Skeletal status, body composition, and glycaemic control in adolescents with type 1 diabetes mellitus. J Diabetes Res. 2018; 2018:8121634.
- 241Loxton P, Narayan K, Munns CF, Craig ME. Bone mineral density and type 1 diabetes in children and adolescents: a meta-analysis. Diabetes Care. 2021; 44(8): 1898-1905.
- 242Zhu Q, Xu J, Zhou M, Lian X, Xu J, Shi J. Association between type 1 diabetes mellitus and reduced bone mineral density in children: a meta-analysis. Osteoporos Int. 2021; 32(6): 1143-1152.
- 243Pham-Short A, Donaghue KC, Ambler G, et al. Abnormal cortical and trabecular bone in youth with type 1 diabetes and celiac disease. Diabetes Care. 2019; 42(8): 1489-1495.
- 244Madsen JOB, Jørgensen NR, Pociot F, Johannesen J. Bone turnover markers in children and adolescents with type 1 diabetes-a systematic review. Pediatr Diabetes. 2019; 20(5): 510-522.
- 245Szymańska M, Michałus I, Kaszkowiak M, et al. Metabolic bone markers can be related to preserved insulin secretion in children with newly diagnosed type 1 diabetes. Pediatr Endocrinol Diabetes Metab. 2020; 26(1): 10-16.
- 246Madsen JOB, Herskin CW, Zerahn B, et al. Bone turnover markers during the remission phase in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2020; 21(2): 366-376.
- 247Karalazou P, Ntelios D, Chatzopoulou F, et al. OPG/RANK/RANKL signaling axis in patients with type I diabetes: associations with parathormone and vitamin D. Ital J Pediatr. 2019; 45(1): 161.
- 248Madsen JOB, Herskin CW, Zerahn B, et al. Decreased markers of bone turnover in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2020; 21(3): 505-514.
- 249Gil-Díaz MC, Raynor J, O'Brien KO, Schwartz GJ, Weber DR. Systematic review: associations of calcium intake, vitamin D intake, and physical activity with skeletal outcomes in people with type 1 diabetes mellitus. Acta Diabetol. 2019; 56(10): 1091-1102.
- 250Lifshitz F, Casavalle PL, Bordoni N, Rodriguez PN, Friedman SM. Oral health in children with obesity or diabetes mellitus. Pediatr Endocrinol Rev. 2016; 14(2): 159-167.
- 251Merchant AT, Oranbandid S, Jethwani M, et al. Oral care practices and A1c among youth with type 1 and type 2 diabetes. J Periodontol. 2012; 83(7): 856-863.
- 252Carneiro VL, Fraiz FC, de Ferreira FM, Pintarelli TP, Oliveira AC, Boguszewski MC. The influence of glycemic control on the oral health of children and adolescents with diabetes mellitus type 1. Arch Endocrinol Metab. 2015; 59(6): 535-540.
- 253Al-Khabbaz AK, Al-Shammari KF, Hasan A, Abdul-Rasoul M. Periodontal health of children with type 1 diabetes mellitus in Kuwait: a case-control study. Med Princ Pract. 2013; 22(2): 144-149.
- 254Sanz M, Ceriello A, Buysschaert M, et al. Scientific evidence on the links between periodontal diseases and diabetes: consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the international diabetes federation and the European Federation of Periodontology. Diabetes Res Clin Pract. 2018; 137: 231-241.
- 255Demmer RT, Holtfreter B, Desvarieux M, et al. The influence of type 1 and type 2 diabetes on periodontal disease progression: prospective results from the study of health in Pomerania (SHIP). Diabetes Care. 2012; 35(10): 2036-2042.