Deep dental phenotyping and a novel FAM20A variant in patients with amelogenesis imperfecta type IG
Kanokwan Sriwattanapong
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Formal analysis, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorThanakorn Theerapanon
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorChompak Khamwachirapitak
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Investigation, Writing - review & editing
Search for more papers by this authorPannagorn Sae-ear
Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorAnucharte Srijunbarl
Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Investigation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Thantrira Porntaveetus
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Correspondence
Thantrira Porntaveetus, Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
Email: [email protected]
Search for more papers by this authorVorasuk Shotelersuk
Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
Search for more papers by this authorKanokwan Sriwattanapong
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Formal analysis, Investigation, Writing - original draft, Writing - review & editing
Search for more papers by this authorThanakorn Theerapanon
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorChompak Khamwachirapitak
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Investigation, Writing - review & editing
Search for more papers by this authorPannagorn Sae-ear
Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorAnucharte Srijunbarl
Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Contribution: Investigation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Thantrira Porntaveetus
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Correspondence
Thantrira Porntaveetus, Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
Email: [email protected]
Search for more papers by this authorVorasuk Shotelersuk
Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
Search for more papers by this authorAbstract
Objectives
To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI).
Methods
Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized.
Results
All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin–enamel junction were observed.
Conclusions
We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The datasets generated and/or analysed during the current study are available in the ClinVar archive. The accession numbers are as follows: SCV002526662: c.758A>G p.(Tyr253Cys); SCV002525504: c.1109+3_1109+7delinsTGGTC; SCV002525505: c.1231C>T p.Arg411Trp; SCV002526663: NC_000017.10: g.66530406_66537936del.
Supporting Information
Filename | Description |
---|---|
odi14510-sup-0001-Supinfo.docxWord 2007 document , 3.1 MB |
Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F., & Hamosh, A. (2014). OMIM.Org: Online Mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Research, 43(D1), D789–D798. https://doi.org/10.1093/nar/gku1205
- Berès, F., Lignon, G., Rouzière, S., Mauprivez, C., Simon, S., Berdal, A., & Dessombz, A. (2018). Physicochemical analysis of human pulpal mineralization secondary to FAM20A mutations. Connective Tissue Research, 59(sup1), 46–51. https://doi.org/10.1080/03008207.2018.1435644
- Budsamongkol, T., Intarak, N., Theerapanon, T., Yodsanga, S., Porntaveetus, T., & Shotelersuk, V. (2019). A novel mutation in COL1A2 leads to osteogenesis imperfecta/Ehlers-Danlos overlap syndrome with brachydactyly. Genes and Diseases, 6(2), 138–146. https://doi.org/10.1016/j.gendis.2019.03.001
- Cui, J., Xiao, J., Tagliabracci, V. S., Wen, J., Rahdar, M., & Dixon, J. E. (2015). A secretory kinase complex regulates extracellular protein phosphorylation. eLife, 4, e06120. https://doi.org/10.7554/eLife.06120
- Cui, J., Zhu, Q., Zhang, H., Cianfrocco, M. A., Leschziner, A. E., Dixon, J. E., & Xiao, J. (2017). Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. eLife, 6, e23990. https://doi.org/10.7554/eLife.23990
- de la Dure-Molla, M., Quentric, M., Yamaguti, P., Acevedo, A. C., Mighell, A., Vikkula, M., Huckert, M., Berdal, A., & Bloch-Zupan, A. (2014). Pathognomonic oral profile of enamel renal syndrome (ERS) caused by recessive FAM20A mutations. Orphanet Journal of Rare Diseases, 9, 84. https://doi.org/10.1186/1750-1172-9-84
- Dourado, M. R., dos Santos, C., Dumitriu, S., Iancu, D., Albanyan, S., Kleta, R., Coletta, R. D., & Marques Mesquita, A. T. (2019). Enamel renal syndrome: A novel homozygous FAM20A founder mutation in 5 new Brazilian families. European Journal of Medical Genetics, 62(11), 103561. https://doi.org/10.1016/j.ejmg.2018.10.013
- Ghadimi, E., Eimar, H., Marelli, B., Nazhat, S. N., Asgharian, M., Vali, H., & Tamimi, F. (2013). Trace elements can influence the physical properties of tooth enamel. Springerplus, 2, 499. https://doi.org/10.1186/2193-1801-2-499
- Hassib, N. F., Shoeib, M. A., ElSadek, H. A., Wali, M. E., Mostafa, M. I., & Abdel-Hamid, M. S. (2020). Two new families with enamel renal syndrome: A novel FAM20A gene mutation and review of literature. European Journal of Medical Genetics, 63(11), 104045. https://doi.org/10.1016/j.ejmg.2020.104045
- Inami, T., Tanimoto, Y., Minami, N., Yamaguchi, M., & Kasai, K. (2015). Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires. The Korean Journal of Orthodontics, 45, 130–135. https://doi.org/10.4041/kjod.2015.45.3.130
- Jaureguiberry, G., De la Dure-Molla, M., Parry, D., Quentric, M., Himmerkus, N., Koike, T., Poulter, E., Klootwijk, M., Robinette, S. L., Howie, A. J., & Patel, V. (2012). Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiology, 122(1-2), 1–6.
- Kantaputra, P. N., Bongkochwilawan, C., Kaewgahya, M., Ohazama, A., Kayserili, H., Erdem, A. P., Aktoren, O., & Guven, Y. (2014). Enamel-renal-gingival syndrome, hypodontia, and a novel FAM20A mutation. American Journal of Medical Genetics. Part A, 164a(8), 2124–2128. https://doi.org/10.1002/ajmg.a.36579
- Kantaputra, P. N., Bongkochwilawan, C., Lubinsky, M., Pata, S., Kaewgahya, M., Tong, H. J., Ketudat Cairns, J. R., Guven, Y., & Chaisrisookumporn, N. (2017). Periodontal disease and FAM20A mutations. Journal of Human Genetics, 62(7), 679–686. https://doi.org/10.1038/jhg.2017.26
- Kim, Y. J., Seymen, F., Kang, J., Koruyucu, M., Tuloglu, N., Bayrak, S., Tuna, E. B., Lee, Z. H., Shin, T. J., Hyun, H. K., Kim, Y. J., Lee, S. H., Hu, J., Simmer, J., & Kim, J. W. (2019). Candidate gene sequencing reveals mutations causing hypoplastic amelogenesis imperfecta. Clinical Oral Investigations, 23(3), 1481–1487. https://doi.org/10.1007/s00784-018-2577-9
- Köhler, S., Gargano, M., Matentzoglu, N., Carmody, L. C., Lewis-Smith, D., Vasilevsky, N. A., Danis, D., Balagura, G., Baynam, G., Brower, A. M., Callahan, T. J., Chute, C. G., Est, J. L., Galer, P. D., Ganesan, S., Griese, M., Haimel, M., Pazmandi, J., Hanauer, M., … Robinson, P. N. (2021). The human phenotype ontology in 2021. Nucleic Acids Research, 49(D1), D1207–D1217. https://doi.org/10.1093/nar/gkaa1043
- Kopanos, C., Tsiolkas, V., Kouris, A., Chapple, C. E., Albarca Aguilera, M., Meyer, R., & Massouras, A. (2019). VarSome: The human genomic variant search engine. Bioinformatics, 35(11), 1978–1980. https://doi.org/10.1093/bioinformatics/bty897
- Koruyucu, M., Seymen, F., Gencay, G., Gencay, K., Tuna, E. B., Shin, T. J., Hyun, H. K., Kim, Y. J., & Kim, J. W. (2018). Nephrocalcinosis in amelogenesis imperfecta caused by the FAM20A mutation. Nephron, 139(2), 189–196. https://doi.org/10.1159/000486607
- Li, L. L., Liu, P. H., Xie, X. H., Ma, S., Liu, C., Chen, L., & Qin, C. L. (2016). Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth. International Journal of Oral Science, 8(2), 98–109. https://doi.org/10.1038/ijos.2016.14
- Lignon, G., Beres, F., Quentric, M., Rouzière, S., Weil, R., de la Dure-Molla, M., Naveau, A., Kozyraki, R., Dessombz, A., & Berdal, A. (2017). FAM20A gene mutation: Amelogenesis or ectopic mineralization? Frontiers in Physiology, 8, 267. https://doi.org/10.3389/fphys.2017.00267
- MacGibbon, D. (1972). Generalized enamel hypoplasia and renal dysfunction. Australian Dental Journal, 17(1), 61–63. https://doi.org/10.1111/j.1834-7819.1972.tb02747.x
- Merheb, R., Arumugam, C., Lee, W., Collin, M., Nguyen, C., Groh-Wargo, S., & Nelson, S. (2016). Neonatal serum phosphorus levels and enamel defects in very low birth weight infants. Journal of Parenteral and Enteral Nutrition, 40(6), 835–841. https://doi.org/10.1177/0148607115573999
- Nitayavardhana, I., Theerapanon, T., Srichomthong, C., Piwluang, S., Wichadakul, D., Porntaveetus, T., & Shotelersuk, V. (2020). Four novel mutations of FAM20A in amelogenesis imperfecta type IG and review of literature for its genotype and phenotype spectra. Molecular Genetics and Genomics, 295(4), 923–931. https://doi.org/10.1007/s00438-020-01668-8
- Ohyama, Y., Lin, J.-H., Govitvattana, N., Lin, I. P., Venkitapathi, S., Alamoudi, A., Husein, D., An, C., Hotta, H., Kaku, M., & Mochida, Y. (2016). FAM20A binds to and regulates FAM20C localization. Scientific Reports, 6(1), 27784. https://doi.org/10.1038/srep27784
- O'Sullivan, J., Bitu, C. C., Daly, S. B., Urquhart, J. E., Barron, M. J., Bhaskar, S. S., Martelli-Júnior, H., dos Santos Neto, P., Mansilla, M. A., Murray, J. C., Coletta, R. D., Black, G. C., & Dixon, M. J. (2011). Whole-exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. American Journal of Human Genetics, 88(5), 616–620. https://doi.org/10.1016/j.ajhg.2011.04.005
- Patel, A., Jagtap, C., Bhat, C., & Shah, R. (2015). Bilateral nephrocalcinosis and amelogenesis imperfecta: A case report. Contemporary Clinical Dentistry, 6(2), 262–265. https://doi.org/10.4103/0976-237X.156063
- Paula, L. M., Melo, N. S., Silva Guerra, E. N., Mestrinho, D. H., & Acevedo, A. C. (2005). Case report of a rare syndrome associating amelogenesis imperfecta and nephrocalcinosis in a consanguineous family. Archives of Oral Biology, 50(2), 237–242. https://doi.org/10.1016/j.archoralbio.2004.11.023
- Poole, L. B. (2015). The basics of thiols and cysteines in redox biology and chemistry. Free Radical Biology and Medicine, 80, 148–157. https://doi.org/10.1016/j.freeradbiomed.2014.11.013
- Porntaveetus, T., Osathanon, T., Nowwarote, N., Pavasant, P., Srichomthong, C., Suphapeetiporn, K., & Shotelersuk, V. (2018). Dental properties, ultrastructure, and pulp cells associated with a novel DSPP mutation. Oral Diseases, 24(4), 619–627. https://doi.org/10.1111/odi.12801
- Richards, S., Aziz, N., Bale, S., Bick, D., das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., & ACMG Laboratory Quality Assurance Committee. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424. https://doi.org/10.1038/gim.2015.30
- Sarna-Boś, K., Boguta, P., Skic, K., Wiącek, D., Maksymiuk, P., Sobieszczański, J., & Chałas, R. (2022). Physicochemical properties and surface characteristics of ground human teeth. Molecules, 27(18), 5852. https://doi.org/10.3390/molecules27185852
- Seow, W. K. (2014). Developmental defects of enamel and dentine: Challenges for basic science research and clinical management. Australian Dental Journal, 59(Suppl 1), 143–154. https://doi.org/10.1111/adj.12104
- Shotelersuk, V., Wichadakul, D., Ngamphiw, C., Srichomthong, C., Phokaew, C., Wilantho, A., Pakchuen, S., Nakhonsri, V., Shaw, P. J., Wasitthankasem, R., Piriyapongsa, J., Wangkumhang, P., Assawapitaksakul, A., Chetruengchai, W., Lapphra, K., Khuninthong, A., Makarawate, P., Suphapeetiporn, K., Mahasirimongkol, S., … Tongsima, S. (2021). The Thai reference exome (T-REx) variant database. Clinical Genetics, 100(6), 703–712. https://doi.org/10.1111/cge.14060
- Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D., Shiel, J. A., Thomas, N. S., Abeysinghe, S., Krawczak, M., & Cooper, D. N. (2003). Human gene mutation database (HGMD): 2003 update. Human Mutation, 21(6), 577–581. https://doi.org/10.1002/humu.10212
- Tariq, U., Haider, Z., Chaudhary, K., Hussain, R., & Ali, J. (2018). Calcium to phosphate ratio measurements in calcium phosphates using LIBS. Journal of Physics Conference Series, 1027, 012015. https://doi.org/10.1088/1742-6596/1027/1/012015
10.1088/1742-6596/1027/1/012015 Google Scholar
- Urzúa, B., Ortega-Pinto, A., Adorno-Farias, D., Morales-Bozo, I., Rojas-Flores, S., Briones-Marín, D., & Lepiman-Torres, C. (2021). Exploring the pool of pathogenic variants of amelogenesis imperfecta: An approach to the understanding of its genetic architecture. Frontiers in Dental Medicine, 2, 785382. https://doi.org/10.3389/fdmed.2021.785382
10.3389/fdmed.2021.785382 Google Scholar
- Wang, S. K., Aref, P., Hu, Y., Milkovich, R. N., Simmer, J. P., el-Khateeb, M., Daggag, H., Baqain, Z. H., & Hu, J. C. (2013). FAM20A mutations can cause enamel-renal syndrome (ERS). PLoS Genetics, 9(2), e1003302. https://doi.org/10.1371/journal.pgen.1003302
- Wang, X., Wang, S., Li, C., Gao, T., Liu, Y., Rangiani, A., Sun, Y., Hao, J., George, A., Lu, Y., Groppe, J., Yuan, B., Feng, J. Q., & Qin, C. (2012). Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genetics, 8(5), e1002708. https://doi.org/10.1371/journal.pgen.1002708
- Worby, C. A., Mayfield, J. E., Pollak, A. J., Dixon, J. E., & Banerjee, S. (2021). The ABCs of the atypical Fam20 secretory pathway kinases. The Journal of Biological Chemistry, 296, 100267. https://doi.org/10.1016/j.jbc.2021.100267
- Zhang, C., Song, Y., & Bian, Z. (2015). Ultrastructural analysis of the teeth affected by amelogenesis imperfecta resulting from FAM83H mutations and review of the literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 119(2), e69–e76. https://doi.org/10.1016/j.oooo.2014.09.002
10.1016/j.oooo.2014.09.002 Google Scholar